Skip to main content

Advertisement

Log in

Gap junctions in inherited human disease

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Gap junctions (GJ) provide direct intercellular communication. The structures underlying these cell junctions are membrane-associated channels composed of six integral membrane connexin (Cx) proteins, which can form communicating channels connecting the cytoplasms of adjacent cells. This provides coupled cells with a direct pathway for sharing ions, nutrients, or small metabolites to establish electrical coupling or balancing metabolites in various tissues. Genetic approaches have uncovered a still growing number of mutations in Cxs related to human diseases including deafness, skin disease, peripheral and central neuropathies, cataracts, or cardiovascular dysfunctions. The discovery of a growing number of inherited human disorders provides an unequivocal demonstration that gap junctional communication is crucial for diverse physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abrams CK, Freidin MM, Verselis VK, Bennett MV, Bargiello TA (2001) Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot–Marie–Tooth disease. Brain Res 900:9–25

    PubMed  CAS  Google Scholar 

  2. Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, Sohl G, Willecke K, Chen P, Lin X (2007) Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci USA 104:1337–1341

    PubMed  CAS  Google Scholar 

  3. Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22:6458–6470

    PubMed  CAS  Google Scholar 

  4. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H (2002) Changes in gap junction distribution and connexin expression pattern during human fetal skin development. J Histochem Cytochem 50:1493–1500

    PubMed  CAS  Google Scholar 

  5. Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT (2008) A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet 45:155–160

    PubMed  CAS  Google Scholar 

  6. Bakirtzis G, Choudhry R, Aasen T, Shore L, Brown K, Bryson S, Forrow S, Tetley L, Finbow M, Greenhalgh D, Hodgins M (2003) Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum Mol Genet 12:1737–1744

    PubMed  CAS  Google Scholar 

  7. Baldo GJ, Gong X, Martinez-Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT (2001) Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J Gen Physiol 118:447–456

    PubMed  CAS  Google Scholar 

  8. Bargiotas P, Monyer H, Schwaninger M (2009) Hemichannels in cerebral ischemia. Curr Mol Med 9:186–194

    PubMed  CAS  Google Scholar 

  9. Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262:2039–2042

    PubMed  CAS  Google Scholar 

  10. Berry V, Mackay D, Khaliq S, Francis PJ, Hameed A, Anwar K, Mehdi SQ, Newbold RJ, Ionides A, Shiels A, Moore T, Bhattacharya SS (1999) Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum Genet 105:168–170

    PubMed  CAS  Google Scholar 

  11. Beyer EC, Davis LM, Saffitz JE, Veenstra RD (1995) Cardiac intercellular communication: consequences of connexin distribution and diversity. Braz J Med Biol Res 28:415–425

    PubMed  CAS  Google Scholar 

  12. Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M (2001) Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot–Marie–Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 10:2783–2795

    PubMed  CAS  Google Scholar 

  13. Bone LJ, Deschenes SM, Balice-Gordon RJ, Fischbeck KH, Scherer SS (1997) Connexin32 and X-linked Charcot–Marie–Tooth disease. Neurobiol Dis 4:221–230

    PubMed  CAS  Google Scholar 

  14. Boyadjiev SA, Chowdry AB, Shapiro RE, Paznekas WA, Wandstrat AE, Choi JW, Kasch L, Zhang G, Wollnik B, Burgess CE, Schalling M, Lovett M, Jabs EW (2002) Physical map of the chromosome 6q22 region containing the oculodentodigital dysplasia locus: analysis of thirteen candidate genes and identification of novel ESTs and DNA polymorphisms. Cytogenet Genome Res 98:29–37

    PubMed  CAS  Google Scholar 

  15. Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP (1994) Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci USA 91:6453–6457

    PubMed  CAS  Google Scholar 

  16. Brown KA, Janjua AH, Karbani G, Parry G, Noble A, Crockford G, Bishop DT, Newton VE, Markham AF, Mueller RF (1996) Linkage studies of non-syndromic recessive deafness (NSRD) in a family originating from the Mirpur region of Pakistan maps DFNB1 centromeric to D13S175. Hum Mol Genet 5:169–173

    PubMed  CAS  Google Scholar 

  17. Bugiani M, Al Shahwan S, Lamantea E, Bizzi A, Bakhsh E, Moroni I, Balestrini MR, Uziel G, Zeviani M (2006) GJA12 mutations in children with recessive hypomyelinating leukoencephalopathy. Neurology 67:273–279

    PubMed  CAS  Google Scholar 

  18. Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, Dickinson JL, Sale MM (2004) A novel mutation in the connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet 41:e106

    PubMed  CAS  Google Scholar 

  19. Butterweck A, Elfgang C, Willecke K, Traub O (1994) Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin. Eur J Cell Biol 65:152–163

    PubMed  CAS  Google Scholar 

  20. Cama E, Melchionda S, Palladino T, Carella M, Santarelli R, Genovese E, Benettazzo F, Zelante L, Arslan E (2009) Hearing loss features in GJB2 biallelic mutations and GJB2/GJB6 digenic inheritance in a large Italian cohort. Int J Audiol 48:12–17

    PubMed  Google Scholar 

  21. Chaib H, Lina-Granade G, Guilford P, Plauchu H, Levilliers J, Morgon A, Petit C (1994) A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1 recessive deafness gene interval. Hum Mol Genet 3:2219–2222

    PubMed  CAS  Google Scholar 

  22. Chen M, Jones DL (2000) Age- and myopathy-dependent changes in connexins of normal and cardiomyopathic Syrian hamster ventricular myocardium. Can J Physiol Pharmacol 78:669–678

    PubMed  CAS  Google Scholar 

  23. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111

    PubMed  CAS  Google Scholar 

  24. Cohn ES, Kelley PM, Fowler TW, Gorga MP, Lefkowitz DM, Kuehn HJ, Schaefer GB, Gobar LS, Hahn FJ, Harris DJ, Kimberling WJ (1999) Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene (GJB2/DFNB1). Pediatrics 103:546–550

    PubMed  CAS  Google Scholar 

  25. Corcos IA, Lafreniere RG, Begy CR, Loch-Caruso R, Willard HF, Glover TW (1992) Refined localization of human connexin32 gene locus, GJB1, to Xq13.1. Genomics 13:479–480

    PubMed  CAS  Google Scholar 

  26. Cottrell GT, Burt JM (2005) Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochim Biophys Acta 1711:126–141

    PubMed  CAS  Google Scholar 

  27. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (alpha-1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 479:173–186

    PubMed  CAS  Google Scholar 

  28. de Zwart-Storm EA, Hamm H, Stoevesandt J, Steijlen PM, Martin PE, van Geel M, van Steensel MA (2008) A novel missense mutation in GJB2 disturbs gap junction protein transport and causes focal palmoplantar keratoderma with deafness. J Med Genet 45:161–166

    PubMed  Google Scholar 

  29. del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249

    PubMed  Google Scholar 

  30. Devi RR, Vijayalakshmi P (2006) Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis 12:190–195

    PubMed  CAS  Google Scholar 

  31. Dobrowolski R, Hertig G, Lechner H, Worsdorfer P, Wulf V, Dicke N, Eckert D, Bauer R, Schorle H, Willecke K (2009) Loss of connexin43-mediated gap junctional coupling in the mesenchyme of limb buds leads to altered expression of morphogens in mice. Hum Mol Genet 18:2899–2911

    PubMed  CAS  Google Scholar 

  32. Dobrowolski R, Sasse P, Schrickel JW, Watkins M, Kim JS, Rackauskas M, Troatz C, Ghanem A, Tiemann K, Degen J, Bukauskas FF, Civitelli R, Lewalter T, Fleischmann BK, Willecke K (2008) The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum Mol Genet 17:539–554

    PubMed  CAS  Google Scholar 

  33. Duffy HS, Ashton AW, O'Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2004) Regulation of connexin43 protein complexes by intracellular acidification. Circ Res 94:215–222

    PubMed  CAS  Google Scholar 

  34. Duffy HS, Sorgen PL, Girvin ME, O'Donnell P, Taffet CW, SM DM, Spray DC (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277:36706–36714

    PubMed  CAS  Google Scholar 

  35. Dupays L, Mazurais D, Rucker-Martin C, Calmels T, Bernot D, Cronier L, Malassine A, Gros D, Theveniau-Ruissy M (2003) Genomic organization and alternative transcripts of the human connexin40 gene. Gene 305:79–90

    PubMed  CAS  Google Scholar 

  36. Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    PubMed  CAS  Google Scholar 

  37. Feldmann D, Denoyelle F, Chauvin P, Garabedian EN, Couderc R, Odent S, Joannard A, Schmerber S, Delobel B, Leman J, Journel H, Catros H, Le Marechal C, Dollfus H, Eliot MM, Delaunoy JP, David A, Calais C, Drouin-Garraud V, Obstoy MF, Bouccara D, Sterkers O, Huy PT, Goizet C, Duriez F, Fellmann F, Helias J, Vigneron J, Montaut B, Lewin P, Petit C, Marlin S (2004) Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation: genotypic and phenotypic analysis. Am J Med Genet 127A:263–267

    PubMed  Google Scholar 

  38. Fishman GI, Eddy RL, Shows TB, Rosenthal L, Leinwand LA (1991) The human connexin gene family of gap junction proteins: distinct chromosomal locations but similar structures. Genomics 10:250–256

    PubMed  CAS  Google Scholar 

  39. Flenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C, Gittens JEI, Gong XQ, Kelsey LB, Lounsbury C, Moreno L, Nieman BJ, Peterson K et al (2005) A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132(19):4375–4386

    PubMed  CAS  Google Scholar 

  40. Garcia CA (1999) A clinical review of Charcot–Marie–Tooth. Ann N Y Acad Sci 883:69–76

    PubMed  CAS  Google Scholar 

  41. Gasparini P, Estivill X, Volpini V, Totaro A, Castellvi-Bel S, Govea N, Mila M, Della Monica M, Ventruto V, De Benedetto M, Stanziale P, Zelante L, Mansfield ES, Sandkuijl L, Surrey S, Fortina P (1997) Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families. Eur J Hum Genet 5:83–88

    PubMed  CAS  Google Scholar 

  42. Gollob MH (2006) Cardiac connexins as candidate genes for idiopathic atrial fibrillation. Curr Opin Cardiol 21:155–158

    PubMed  Google Scholar 

  43. Gong X, Baldo GJ, Kumar NM, Gilula NB, Mathias RT (1998) Gap junctional coupling in lenses lacking alpha3 connexin. Proc Natl Acad Sci USA 95:15303–15308

    PubMed  CAS  Google Scholar 

  44. Gonzalez D, Gomez-Hernandez JM, Barrio LC (2007) Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol 94:66–106

    PubMed  CAS  Google Scholar 

  45. Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3:49–58

    Article  PubMed  CAS  Google Scholar 

  46. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    PubMed  CAS  Google Scholar 

  47. Groenewegen WA, Firouzi M, Bezzina CR, Vliex S, van Langen IM, Sandkuijl L, Smits JP, Hulsbeek M, Rook MB, Jongsma HJ, Wilde AA (2003) A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 92:14–22

    PubMed  CAS  Google Scholar 

  48. Gu H, Smith FC, Taffet SM, Delmar M (2003) High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 93:201–206

    PubMed  CAS  Google Scholar 

  49. Guilford P, Ayadi H, Blanchard S, Chaib H, Le Paslier D, Weissenbach J, Drira M, Petit C (1994) A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Hum Mol Genet 3:989–993

    PubMed  CAS  Google Scholar 

  50. Gurtler N, Egenter C, Bosch N, Plasilova M (2008) Mutation analysis of the Cx26, Cx30, and Cx31 genes in autosomal recessive nonsyndromic hearing impairment. Acta Otolaryngol 128:1056–1062

    PubMed  CAS  Google Scholar 

  51. Hanemann CO, Bergmann C, Senderek J, Zerres K, Sperfeld AD (2003) Transient, recurrent, white matter lesions in X-linked Charcot–Marie–Tooth disease with novel connexin 32 mutation. Arch Neurol 60:605–609

    PubMed  Google Scholar 

  52. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143

    PubMed  CAS  Google Scholar 

  53. Heathcote K, Syrris P, Carter ND, Patton MA (2000) A connexin 26 mutation causes a syndrome of sensorineural hearing loss and palmoplantar hyperkeratosis (MIM 148350). J Med Genet 37:50–51

    PubMed  CAS  Google Scholar 

  54. Henneke M, Combes P, Diekmann S, Bertini E, Brockmann K, Burlina AP, Kaiser J, Ohlenbusch A, Plecko B, Rodriguez D, Boespflug-Tanguy O, Gartner J (2008) GJA12 mutations are a rare cause of Pelizaeus–Merzbacher-like disease. Neurology 70:748–754

    PubMed  CAS  Google Scholar 

  55. Herve JC, Derangeon M, Bahbouhi B, Mesnil M, Sarrouilhe D (2007) The connexin turnover, an important modulating factor of the level of cell-to-cell junctional communication: comparison with other integral membrane proteins. J Membr Biol 217:21–33

    PubMed  CAS  Google Scholar 

  56. Herve JC, Sarrouilhe D (2006) Protein phosphatase modulation of the intercellular junctional communication: importance in cardiac myocytes. Prog Biophys Mol Biol 90:225–248

    PubMed  CAS  Google Scholar 

  57. Hsieh CL, Kumar NM, Gilula NB, Francke U (1991) Distribution of genes for gap junction membrane channel proteins on human and mouse chromosomes. Somat Cell Mol Genet 17:191–200

    PubMed  CAS  Google Scholar 

  58. Ionasescu V, Searby C, Ionasescu R (1994) Point mutations of the connexin32 (GJB1) gene in X-linked dominant Charcot–Marie–Tooth neuropathy. Hum Mol Genet 3:355–358

    PubMed  CAS  Google Scholar 

  59. Ionasescu V, Searby C, Ionasescu R, Meschino W (1995) New point mutations and deletions of the connexin 32 gene in X-linked Charcot–Marie–Tooth neuropathy. Neuromuscul Disord 5:297–299

    PubMed  CAS  Google Scholar 

  60. Iossa S, Chinetti V, Auletta G, Laria C, De Luca M, Rienzo M, Giannini P, Delfino M, Ciccodicola A, Marciano E, Franze A (2009) New evidence for the correlation of the p.G130V mutation in the GJB2 gene and syndromic hearing loss with palmoplantar keratoderma. Am J Med Genet 149A:685–688

    PubMed  CAS  Google Scholar 

  61. Jiang JX, Goodenough DA (1996) Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 93:1287–1291

    PubMed  CAS  Google Scholar 

  62. Kalcheva N, Qu J, Sandeep N, Garcia L, Zhang J, Wang Z, Lampe PD, Suadicani SO, Spray DC, Fishman GI (2007) Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc Natl Acad Sci USA 104:20512–20516

    PubMed  CAS  Google Scholar 

  63. Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ (1998) Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62:792–799

    PubMed  CAS  Google Scholar 

  64. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    PubMed  CAS  Google Scholar 

  65. Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N (2004) Novel connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet 127A:152–157

    PubMed  Google Scholar 

  66. Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16:159–166

    PubMed  CAS  Google Scholar 

  67. Kumari SS, Varadaraj K, Valiunas V, Brink PR (2001) Site-directed mutations in the transmembrane domain M3 of human connexin37 alter channel conductance and gating. Biochem Biophys Res Commun 280:440–472

    PubMed  CAS  Google Scholar 

  68. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    PubMed  CAS  Google Scholar 

  69. Lamartine J, Munhoz Essenfelder G, Kibar Z, Lanneluc I, Callouet E, Laoudj D, Lemaitre G, Hand C, Hayflick SJ, Zonana J, Antonarakis S, Radhakrishna U, Kelsell DP, Christianson AL, Pitaval A, Der Kaloustian V, Fraser C, Blanchet-Bardon C, Rouleau GA, Waksman G (2000) Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 26:142–144

    PubMed  CAS  Google Scholar 

  70. Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW (2007) Connexin levels regulate keratinocyte differentiation in the epidermis. J Biol Chem 282:30171–30180

    PubMed  CAS  Google Scholar 

  71. Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci USA 99:10446–10451

    PubMed  CAS  Google Scholar 

  72. Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J Membr Biol 217:43–51

    PubMed  CAS  Google Scholar 

  73. Li X, Lynn BD, Olson C, Meier C, Davidson KG, Yasumura T, Rash JE, Nagy JI (2002) Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J NeuroSci 16:795–806

    PubMed  Google Scholar 

  74. Liu W, Bostrom M, Kinnefors A, Rask-Andersen H (2009) Unique expression of connexins in the human cochlea. Hear Res 250:55–62

    PubMed  CAS  Google Scholar 

  75. Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE (2001) Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 10:2945–2951

    PubMed  CAS  Google Scholar 

  76. Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE (2000) Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 9:63–67

    PubMed  CAS  Google Scholar 

  77. Liu XZ, Yuan Y, Yan D, Ding EH, Ouyang XM, Fei Y, Tang W, Yuan H, Chang Q, Du LL, Zhang X, Wang G, Ahmad S, Kang DY, Lin X, Dai P (2009) Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum Genet 125:53–62

    PubMed  CAS  Google Scholar 

  78. Loddenkemper T, Grote K, Evers S, Oelerich M, Stogbauer F (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249:584–595

    PubMed  Google Scholar 

  79. López-Bigas N, Olivé M, Rabionet R et al (2001) Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 10:947–952

    PubMed  Google Scholar 

  80. Macari F, Landau M, Cousin P, Mevorah B, Brenner S, Panizzon R, Schorderet DF, Hohl D, Huber M (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet 67:1296–1301

    PubMed  CAS  Google Scholar 

  81. Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S, Shiels A (1997) A new locus for dominant “zonular pulverulent” cataract, on chromosome 13. Am J Hum Genet 60:1474–1478

    PubMed  CAS  Google Scholar 

  82. Martinez AD, Acuna R, Figueroa V, Maripillan J, Nicholson B (2009) Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 11:309–322

    PubMed  CAS  Google Scholar 

  83. Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50

    PubMed  CAS  Google Scholar 

  84. McLachlan E, Manias JL, Gong XQ, Lounsbury CS, Shao Q, Bernier SM, Bai D, Laird DW (2005) Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun Adhes 12:279–292

    PubMed  CAS  Google Scholar 

  85. Meier C, Dermietzel R, Davidson KG, Yasumura T, Rash JE (2004) Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures. J Neurosci 24:3186–3198

    PubMed  CAS  Google Scholar 

  86. Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973

    PubMed  CAS  Google Scholar 

  87. Miquerol L, Dupays L, Theveniau-Ruissy M, Alcolea S, Jarry-Guichard T, Abran P, Gros D (2003) Gap junctional connexins in the developing mouse cardiac conduction system. Novartis Found Symp 250:80–98, discussion 98–109, 276–279

    PubMed  CAS  Google Scholar 

  88. Moreno AP, Chanson M, Elenes S et al (2002) Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ Res 90:450–457

    PubMed  CAS  Google Scholar 

  89. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    PubMed  CAS  Google Scholar 

  90. Nelis E, Haites N, Van Broeckhoven C (1999) Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mutat 13:11–28

    PubMed  CAS  Google Scholar 

  91. Nickel R, Forge A (2008) Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 16:452–457

    PubMed  Google Scholar 

  92. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    PubMed  CAS  Google Scholar 

  93. Oh S, Rubin JB, Bennett MV, Verselis VK, Bargiello TA (1999) Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol 114:339–364

    PubMed  CAS  Google Scholar 

  94. Omori Y, Mesnil M, Yamasaki H (1996) Connexin 32 mutations from X-linked Charcot–Marie–Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7:907–916

    PubMed  CAS  Google Scholar 

  95. Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399

    PubMed  CAS  Google Scholar 

  96. Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS (2007) Loss-of-function GJA12/connexin47 mutations cause Pelizaeus–Merzbacher-like disease. Mol Cell Neurosci 34:629–641

    PubMed  CAS  Google Scholar 

  97. Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    PubMed  CAS  Google Scholar 

  98. Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA (2008) Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci USA 105:18776–18781

    PubMed  CAS  Google Scholar 

  99. Ortolano S, Di Pasqualec G, Crispinoa G, Anselmia F, Mammano F, Chiorinic JA (2008) Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci USA 105:18776–18781

    PubMed  CAS  Google Scholar 

  100. Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF (2002) A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect? Eur J Hum Genet 10:72–76

    PubMed  CAS  Google Scholar 

  101. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    PubMed  CAS  Google Scholar 

  102. Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, Grossman RI, Lenkinski R, Kamholz JA, Shy ME (2002) Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52:429–434

    PubMed  CAS  Google Scholar 

  103. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    PubMed  CAS  Google Scholar 

  104. Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, Koivisto PA, Van Maldergem L, Boyadjiev SA, Bodurtha JN, Jabs EW (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30:724–733

    PubMed  CAS  Google Scholar 

  105. Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61–80

    PubMed  CAS  Google Scholar 

  106. Plantard L, Huber M, Macari F, Meda P, Hohl D (2003) Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis. Hum Mol Genet 12:3287–3294

    PubMed  CAS  Google Scholar 

  107. Polyakov AV, Shagina IA, Khlebnikova OV, Evgrafov OV (2001) Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet 60:476–478

    PubMed  CAS  Google Scholar 

  108. Raimondi E, Gaudi S, Moralli D, De Carli L, Malcovati M, Simonic T, Tenchini ML (1992) Assignment of the human connexin 32 gene (GJB1) to band Xq13. Cytogenet Cell Genet 60:210–211

    PubMed  CAS  Google Scholar 

  109. Rees MI, Watts P, Fenton I, Clarke A, Snell RG, Owen MJ, Gray J (2000) Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet 106:206–209

    PubMed  CAS  Google Scholar 

  110. Ressot C, Gomes D, Dautigny A, Pham-Dinh D, Bruzzone R (1998) Connexin32 mutations associated with X-linked Charcot–Marie–Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 18:4063–4075

    PubMed  CAS  Google Scholar 

  111. Richard G, Brown N, Ishida-Yamamoto A, Krol A (2004) Expanding the phenotypic spectrum of Cx26 disorders: Bart–Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol 123:856–863

    PubMed  CAS  Google Scholar 

  112. Richard G, Brown N, Rouan F, Van der Schroeff JG, Bijlsma E, Eichenfield LF, Sybert VP, Greer KE, Hogan P, Campanelli C, Compton JG, Bale SJ, DiGiovanna JJ, Uitto J (2003) Genetic heterogeneity in erythrokeratodermia variabilis: novel mutations in the connexin gene GJB4 (Cx30.3) and genotype–phenotype correlations. J Invest Dermatol 120:601–609

    PubMed  CAS  Google Scholar 

  113. Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH Jr, DiGiovanna JJ, Compton JG, Bale SJ (1998) Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20:366–369

    PubMed  CAS  Google Scholar 

  114. Richardson RR, Donnai D, Meire F, Dixon MJ (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet 41:60–67

    PubMed  CAS  Google Scholar 

  115. Saez JC, Martinez AD, Branes MC, Gonzalez HE (1998) Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res 31:593–600

    PubMed  CAS  Google Scholar 

  116. Salomon D, Masgrau E, Vischer S, Ullrich S, Dupont E, Sappino P, Saurat JH, Meda P (1994) Topography of mammalian connexins in human skin. J Invest Dermatol 103:240–247

    PubMed  CAS  Google Scholar 

  117. Salviati L, Trevisson E, Baldoin MC, Toldo I, Sartori S, Calderone M, Tenconi R, Laverda A (2007) A novel deletion in the GJA12 gene causes Pelizaeus–Merzbacher-like disease. Neurogenetics 8:57–60

    PubMed  CAS  Google Scholar 

  118. Sargiannidou I, Ahn M, Enriquez AD, Peinado A, Reynolds R, Abrams C, Scherer SS, Kleopa KA (2008) Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis 30:221–233

    PubMed  CAS  Google Scholar 

  119. Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15:8281–8294

    PubMed  CAS  Google Scholar 

  120. Scherer SS, Xu YT, Nelles E, Fischbeck K, Willecke K, Bone LJ (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24:8–20

    PubMed  CAS  Google Scholar 

  121. Schrander-Stumpel CT, Franke CL (1996) Central nervous system abnormalities in oculodentodigital dysplasia. Genet Couns 7:233–235

    PubMed  CAS  Google Scholar 

  122. Scott DA, Carmi R, Elbedour K, Duyk GM, Stone EM, Sheffield VC (1995) Nonsyndromic autosomal recessive deafness is linked to the DFNB1 locus in a large inbred Bedouin family from Israel. Am J Hum Genet 57:965–968

    PubMed  CAS  Google Scholar 

  123. Segretain D, Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662:3–21

    PubMed  CAS  Google Scholar 

  124. Sharland M, Bleach NR, Goberdhan PD, Patton MA (1992) Autosomal dominant palmoplantar hyperkeratosis and sensorineural deafness in three generations. J Med Genet 29:50–52

    PubMed  CAS  Google Scholar 

  125. Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532

    PubMed  CAS  Google Scholar 

  126. Simon AM, Goodenough DA, Paul DL (1998) Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8:295–298

    PubMed  CAS  Google Scholar 

  127. Smith FJ, Morley SM, McLean WH (2002) A novel connexin 30 mutation in Clouston syndrome. J Invest Dermatol 118:530–532

    PubMed  CAS  Google Scholar 

  128. Snoeckx RL, Hassan DM, Kamal NM, Van Den Bogaert K, Van Camp G (2005) Mutation analysis of the GJB2 (connexin 26) gene in Egypt. Hum Mutat 26:60–61

    PubMed  Google Scholar 

  129. Spray DC, Dermietzel R (1995) X-linked dominant Charcot–Marie–Tooth disease and other potential gap-junction diseases of the nervous system. Trends Neurosci 18:256–262

    PubMed  CAS  Google Scholar 

  130. Spray DC, Moreno AP, Campos-de-Carvalho AC (1993) Biophysical properties of the human cardiac gap junction channel. Braz J Med Biol Res 26:541–552

    PubMed  CAS  Google Scholar 

  131. Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773

    PubMed  Google Scholar 

  132. Stojkovic T, Latour P, Vandenberghe A, Hurtevent JF, Vermersch P (1999) Sensorineural deafness in X-linked Charcot–Marie–Tooth disease with connexin 32 mutation (R142Q). Neurology 52:1010–1014

    PubMed  CAS  Google Scholar 

  133. Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288:C613–C623

    PubMed  CAS  Google Scholar 

  134. Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X (2009) Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea. J Comp Neurol 516:569–579

    PubMed  CAS  Google Scholar 

  135. Suzuki T, Takamatsu T, Oyamada M (2003) Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J Histochem Cytochem 51:903–912

    PubMed  CAS  Google Scholar 

  136. Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26:1991–1999

    PubMed  CAS  Google Scholar 

  137. Tenbroek E, Arneson M, Jarvis L, Louis C (1992) The distribution of the fiber cell intrinsic membrane proteins MP20 and connexin46 in the bovine lens. J Cell Sci 103(Pt 1):245–257

    PubMed  CAS  Google Scholar 

  138. Teubner B, Degen J, Sohl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176:249–262

    PubMed  CAS  Google Scholar 

  139. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21

    PubMed  CAS  Google Scholar 

  140. Thomas T, Aasen T, Hodgins M, Laird DW (2003) Transport and function of cx26 mutants involved in skin and deafness disorders. Cell Commun Adhes 10:353–358

    PubMed  CAS  Google Scholar 

  141. Thomsen M, Schneider U, Weber M, Niethard FU (1998) The different appearance of the oculodentodigital dysplasia syndrome. J Pediatr Orthop B 7:23–26

    PubMed  CAS  Google Scholar 

  142. Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am J Hum Genet 75:251–260

    PubMed  CAS  Google Scholar 

  143. Valiunas V, Beyer EC, Brink PR (2002) Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 91:104–111

    PubMed  CAS  Google Scholar 

  144. van Geel M, van Steensel MA, Kuster W, Hennies HC, Happle R, Steijlen PM, Konig A (2002) HID and KID syndromes are associated with the same connexin 26 mutation. Br J Dermatol 146:938–942

    PubMed  Google Scholar 

  145. van Steensel MA (2004) Gap junction diseases of the skin. Am J Med Genet C Semin Med Genet 131C:12–19

    PubMed  Google Scholar 

  146. van Steensel MA, Spruijt L, van der Burgt I, Bladergroen RS, Vermeer M, Steijlen PM, van Geel M (2005) A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am J Med Genet 132A:171–174

    PubMed  Google Scholar 

  147. Verselis VK, Ginter CS, Bargiello TA (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351

    PubMed  CAS  Google Scholar 

  148. Vingolo EM, Steindl K, Forte R, Zompatori L, Iannaccone A, Sciarra A, Del Porto G, Pannarale MR (1994) Autosomal dominant simple microphthalmos. J Med Genet 31:721–725

    PubMed  CAS  Google Scholar 

  149. Vitiello C, D'Adamo P, Gentile F, Vingolo EM, Gasparini P, Banfi S (2005) A novel GJA1 mutation causes oculodentodigital dysplasia without syndactyly. Am J Med Genet 133A:58–60

    PubMed  CAS  Google Scholar 

  150. Vreeburg M, de Zwart-Storm EA, Schouten MI, Nellen RG, Marcus-Soekarman D, Devies M, van Geel M, van Steensel MA (2007) Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43. Am J Med Genet 143:360–363

    PubMed  CAS  Google Scholar 

  151. Wang HL, Chang WT, Yeh TH, Wu T, Chen MS, Wu CY (2004) Functional analysis of connexin-32 mutants associated with X-linked dominant Charcot–Marie–Tooth disease. Neurobiol Dis 15:361–370

    PubMed  CAS  Google Scholar 

  152. Wang WH, Yang JJ, Lin YC, Yang JT, Chan CH, Li SY (2009) Identification of novel variants in the Cx29 gene of nonsyndromic hearing loss patients using buccal cells and restriction fragment length polymorphism method. Audiol Neurootol 15:81–87

    PubMed  Google Scholar 

  153. White TW (2002) Unique and redundant connexin contributions to lens development. Science 295:319–320

    PubMed  CAS  Google Scholar 

  154. White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825

    PubMed  CAS  Google Scholar 

  155. White TW, Paul DL, Goodenough DA, Bruzzone R (1995) Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6:459–470

    PubMed  CAS  Google Scholar 

  156. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    PubMed  CAS  Google Scholar 

  157. Willecke K, Jungbluth S, Dahl E, Hennemann H, Heynkes R, Grzeschik KH (1990) Six genes of the human connexin gene family coding for gap junctional proteins are assigned to four different human chromosomes. Eur J Cell Biol 53:275–280

    PubMed  CAS  Google Scholar 

  158. Willoughby CE, Arab S, Gandhi R, Zeinali S, Arab S, Luk D, Billingsley G, Munier FL, Heon E (2003) A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J Med Genet 40:e124

    PubMed  CAS  Google Scholar 

  159. Xia CH, Cheung D, DeRosa AM, Chang B, Lo WK, White TW, Gong X (2006) Knock-in of alpha3 connexin prevents severe cataracts caused by an alpha8 point mutation. J Cell Sci 119:2138–2144

    PubMed  Google Scholar 

  160. Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin 31 in the developing mouse cochlea. NeuroReport 11:2449–2453

    PubMed  CAS  Google Scholar 

  161. Xia A, Katori Y, Oshima T, Watanabe K, Kikuchi T, Ikeda K (2001) Expression of connexin 30 in the developing mouse cochlea. Brain Res 898:364–367

    PubMed  CAS  Google Scholar 

  162. Xia J, Liu C, Tang B, Pan Q, Huang L, Dai H, Zhang B, Xie W, Hu D, Zheng D, Shi X, Wang D, Xia K, Yu K, Liao X, Feng Y, Yang Y, Xiao J, Xie D, Huang J (1998) Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20:370–373

    PubMed  CAS  Google Scholar 

  163. Yang JJ, Huang SH, Chou KH, Liao PJ, Su CC, Li SY (2007) Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol 12:198–208

    PubMed  CAS  Google Scholar 

  164. Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609

    PubMed  CAS  Google Scholar 

  165. Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186

    PubMed  CAS  Google Scholar 

  166. Zoll B, Petersen L, Lange K, Gabriel P, Kiese-Himmel C, Rausch P, Berger J, Pasche B, Meins M, Gross M, Berger R, Kruse E, Kunz J, Sperling K, Laccone F (2003) Evaluation of Cx26/GJB2 in German hearing impaired persons: mutation spectrum and detection of disequilibrium between M34T (c.101T>C) and −493del10. Hum Mutat 21:98

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Sarah Hoffmann for the critical reading of the manuscript and Ms. Helga Schulze for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Zoidl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoidl, G., Dermietzel, R. Gap junctions in inherited human disease. Pflugers Arch - Eur J Physiol 460, 451–466 (2010). https://doi.org/10.1007/s00424-010-0789-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0789-1

Keywords

Navigation