Skip to main content
Log in

Rapid effects of hypoxia on H+ homeostasis in articular chondrocytes

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Articular chondrocytes experience low oxygen (O2) levels compared with many other tissues, and values fall further in disease states. Chondrocyte intracellular pH (pHi) is a powerful modulator of matrix synthesis and is principally regulated by Na+-H+ exchange (NHE). In equine chondrocytes, NHE is inhibited when cells are incubated for 3 h at low O2, leading to intracellular acidosis. O2-dependent changes in reactive oxygen species (ROS) levels appear to underlie this effect. The present study examines whether hypoxia can influence chondrocyte NHE activity and pHi over shorter timescales using the pH-sensitive fluoroprobe BCECF in cells isolated not only from equine cartilage but also from bovine tissue. O2 levels in initially oxygenated solutions gassed with N2 fell to approximately 1% within 2 h. A progressive fall in pHi and acid extrusion capacity was observed, with statistically significant effects (P < 0.05) apparent within 3 h. For equine and bovine cell populations subjected to step change in O2 by resuspension in hypoxic (1%) solutions, a decline in acid extrusion and pHi was observed within 10 min and continued throughout the recording period. This effect represented inhibition of the NHE-mediated fraction of acid extrusion. Cells subjected to hypoxic solutions supplemented with CoCl2 (100 μM) or antimycin A (100 µM) to raise levels of ROS did not acidify. The conserved nature and rapidity of the response to hypoxia has considerable implications for chondrocyte homeostasis and potentially for the maintenance of cartilage integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  PubMed  CAS  Google Scholar 

  2. Brighton CT, Lane JM, Koh JK (1974) In vitro rabbit articular cartilage organ model. II. 35S incorporation in various oxygen tensions. Arthritis Rheum 17:245–252

    Article  PubMed  CAS  Google Scholar 

  3. Browning JA, Walker RE, Hall AC, Wilkins RJ (1999) Modulation of Na+ × H+ exchange by hydrostatic pressure in isolated bovine articular chondrocytes. Acta Physiol Scand 166:39–45

    Article  PubMed  CAS  Google Scholar 

  4. Browning JA, Wilkins RJ (1998) The characterisation of mechanisms regulating intracellular pH in a transformed human articular chondrocyte cell line C-20/A4. J Physiol 513P:54P

    Google Scholar 

  5. Browning JA, Wilkins RJ (2004) Mechanisms contributing to intracellular pH homeostasis in an immortalised human chondrocyte cell line. Comp Biochem Physiol A Mol Integr Physiol 137:409–418

    Article  PubMed  CAS  Google Scholar 

  6. Chandel NS, Schumacker PT (2000) Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88:1880–1889

    Article  PubMed  CAS  Google Scholar 

  7. Clark CC, Tolin BS, Brighton CT (1991) The effect of oxygen tension on proteoglycan synthesis and aggregation in mammalian growth plate chondrocytes. J Orthop Res 9:477–484

    Article  PubMed  CAS  Google Scholar 

  8. Fahling M (2009) Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol (Oxf) 195:205–230

    Article  CAS  Google Scholar 

  9. Gibson JS, Milner PI, White R, Fairfax TP, Wilkins RJ (2008) Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch 455:563–573

    Article  PubMed  CAS  Google Scholar 

  10. Grimshaw MJ, Mason RM (2000) Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8:386–392

    Article  PubMed  CAS  Google Scholar 

  11. Hand SC (1997) Oxygen, pHi and arrest of biosynthesis in brine shrimp embryos. Acta Physiol Scand 161:543–551

    Article  PubMed  CAS  Google Scholar 

  12. Henderson GE, Mason RM (1991) Effect of oxygen tension on 35S-glycosaminoglycan synthesis and UDP-sugar pool size in articular cartilage. Biochem Soc Trans 19:364S

    PubMed  CAS  Google Scholar 

  13. Henrotin Y, Kurz B, Aigner T (2005) Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13:643–654

    Article  PubMed  CAS  Google Scholar 

  14. Heywood HK, Bader DL, Lee DA (2006) Glucose concentration and medium volume influence cell viability and glycosaminoglycan synthesis in chondrocyte-seeded alginate constructs. Tissue Eng 12:3487–3496

    Article  PubMed  CAS  Google Scholar 

  15. Karmazyn M (1996) The sodium-hydrogen exchange system in the heart: its role in ischemic and reperfusion injury and therapeutic implications. Can J Cardiol 12:1074–1082

    PubMed  CAS  Google Scholar 

  16. Lane JM, Brighton CT, Menkowitz BJ (1977) Anaerobic and aerobic metabolism in articular cartilage. J Rheumatol 4:334–342

    PubMed  CAS  Google Scholar 

  17. Lee RB, Urban JPG (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102

    PubMed  CAS  Google Scholar 

  18. Lee RB, Urban JPG (2002) Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum 46:3190–3200

    Article  PubMed  CAS  Google Scholar 

  19. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13:769–776

    Article  PubMed  CAS  Google Scholar 

  20. Marcus RE (1973) The effect of low oxygen concentration on growth, glycolysis, and sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum 16:646–656

    Article  PubMed  CAS  Google Scholar 

  21. Martin JA, Buckwalter JA (2002) Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3:257–264

    Article  PubMed  CAS  Google Scholar 

  22. Milner PI, Fairfax TP, Browning JA, Wilkins RJ, Gibson JS (2006) The effect of O2 tension on pH homeostasis in equine articular chondrocytes. Arthritis Rheum 54:3523–3532

    Article  PubMed  CAS  Google Scholar 

  23. Milner PI, Wilkins RJ, Gibson JS (2007) The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes. Osteoarthritis Cartilage 15:735–742

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez JC, Wilkins RJ (2003) Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 135:575–583

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez JC, Wilkins RJ (2004) Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 137:173–182

    Article  PubMed  Google Scholar 

  26. Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci 271:261–272

    Article  PubMed  CAS  Google Scholar 

  27. Simpkin VL, Murray DH, Hall AP, Hall AC (2007) Bicarbonate-dependent pHi regulation by chondrocytes within the superficial zone of bovine articular cartilage. J Cell Physiol 212:600–609

    Article  PubMed  CAS  Google Scholar 

  28. Slepkov ER, Rainey JK, Sykes BD, Fliegel L (2007) Structural and functional analysis of the Na+/H+ exchanger. Biochem J 401:623–633

    Article  PubMed  CAS  Google Scholar 

  29. Tattersall AL, Browning JA, Wilkins RJ (2005) Modulation of H+ transport mechanisms by interleukin-1 in isolated bovine articular chondrocytes. Cell Physiol Biochem 16:43–50

    Article  PubMed  CAS  Google Scholar 

  30. Tattersall A, Meredith D, Furla P, Shen MR, Ellory C, Wilkins R (2003) Molecular and functional identification of the Na+/H+ exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes. Cell Physiol Biochem 13:215–222

    Article  PubMed  CAS  Google Scholar 

  31. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  32. Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    Article  PubMed  CAS  Google Scholar 

  33. Urban JP, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154:262–270

    Article  PubMed  CAS  Google Scholar 

  34. Wilkins RJ, Browning JA, Ellory JC (2000) Surviving in a matrix: membrane transport in articular chondrocytes. J Membr Biol 177:95–108

    Article  PubMed  CAS  Google Scholar 

  35. Wilkins RJ, Browning JA, Urban JP (2000) Chondrocyte regulation by mechanical load. Biorheology 37:67–74

    PubMed  CAS  Google Scholar 

  36. Wilkins RJ, Hall AC (1992) Measurement of intracellular pH in isolated bovine articular chondrocytes. Exp Physiol 77:521–524

    PubMed  CAS  Google Scholar 

  37. Wilkins RJ, Hall AC (1995) Control of matrix synthesis in isolated bovine chondrocytes by extracellular and intracellular pH. J Cell Physiol 164:474–481

    Article  PubMed  CAS  Google Scholar 

  38. Windhaber RA, Wilkins RJ, Meredith D (2003) Functional characterisation of glucose transport in bovine articular chondrocytes. Pflugers Arch 446:572–577

    Article  PubMed  CAS  Google Scholar 

  39. Yamazaki N, Browning JA, Wilkins RJ (2000) Modulation of Na+ × H+ exchange by osmotic shock in isolated bovine chondrocytes. Acta Physiol Scand 169:221–228

    Article  PubMed  CAS  Google Scholar 

  40. Ysart GE, Mason RM (1994) Responses of articular cartilage explant cultures to different oxygen tensions. Biochim Biophys Acta 1221:15–20

    Article  PubMed  CAS  Google Scholar 

  41. Zhou S, Chiu Z, Urban JPG (2004) Factors affecting the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modelling study. Arthritis Rheum 50:3915–3924

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Horserace Betting Levy Board, the Arthritis Research Campaign, and the Sir Halley Stewart Trust for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wilkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, J.S., McCartney, D., Sumpter, J. et al. Rapid effects of hypoxia on H+ homeostasis in articular chondrocytes. Pflugers Arch - Eur J Physiol 458, 1085–1092 (2009). https://doi.org/10.1007/s00424-009-0695-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0695-6

Keywords

Navigation