Skip to main content
Log in

Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Articular cartilage is an avascular tissue dependent on diffusion mainly from synovial fluid to service its metabolic requirements. Levels of oxygen (O2) in the tissue are low, with estimates of between 1 and 6%. Metabolism is largely, if not entirely, glycolytic, with little capacity for oxidative phosphorylation. Notwithstanding, the tissue requires O2 and consumes it, albeit at low rates. Changes in O2 tension also have profound effects on chondrocytes affecting phenotype, gene expression, and morphology, as well as response to, and production of, cytokines. Although chondrocytes can survive prolonged anoxia, low O2 levels have significant metabolic effects, inhibiting glycolysis (the negative Pasteur effect), and also notably matrix production. Why this tissue should respond so markedly to reduction in O2 tension remains a paradox. Ion homeostasis in articular chondrocytes is also markedly affected by the extracellular matrix in which the cells reside. Recent work has shown that ion homeostasis also responds to changes in O2 tension, in such a way as to produce significant effects on cell function. For this purpose, O2 probably acts via alteration in levels of reactive oxygen species. We discuss the possibility that O2 consumption by this tissue is required to maintain levels of ROS, which are then used physiologically as an intracellular signalling device. This postulate may go some way towards explaining why the tissue is dependent on O2 and why its removal has such marked effects. Understanding the role of oxygen has implications for disease states in which O2 or ROS levels may be perturbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    PubMed  CAS  Google Scholar 

  2. Arai M, Imai H, Koumura T, Yoshida M, Emoto K, Umeda M, Chiba N, Nakagawa Y (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem 274:4924–4933

    PubMed  CAS  Google Scholar 

  3. Barker GA, Wilkins RJ, Golding S, Ellory JC (1999) Neutral amino acid transport in bovine articular chondrocytes. J Physiol 514:795–808

    PubMed  CAS  Google Scholar 

  4. Bassett CA, Herrmann I (1961) Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 190:460–461

    PubMed  CAS  Google Scholar 

  5. Benel L, Ronot X, Kornprobst M, Adolphe M, Mounolou JC (1986) Mitochondrial uptake of rhodamine 123 by rabbit articular chondrocytes. Cytometry 7:281–285

    PubMed  CAS  Google Scholar 

  6. Benya PD, Padilla SR, Nimni ME (1977) The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry 16:865–872

    PubMed  CAS  Google Scholar 

  7. Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313–1321

    PubMed  CAS  Google Scholar 

  8. Blanco FJ, Lotz M (1995) IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2. Exp Cell Res 218:319–325

    PubMed  CAS  Google Scholar 

  9. Brighton CT, Kitajima T, Hunt RM (1984) Zonal analysis of cytoplasmic components of articular cartilage chondrocytes. Arthritis Rheum 27:1290–1299

    PubMed  CAS  Google Scholar 

  10. Brighton CT, Lane JM, Koh JK (1974) In vitro rabbit articular cartilage organ model. II. 35S incorporation in various oxygen tensions. Arthritis Rheum 17:245–252

    PubMed  CAS  Google Scholar 

  11. Browning JA, Walker RE, Hall AC, Wilkins RJ (1999) Modulation of Na+ x H+ exchange by hydrostatic pressure in isolated bovine articular chondrocytes. Acta Physiol Scand 166:39–45

    PubMed  CAS  Google Scholar 

  12. Browning JA, Wilkins RJ (2002) The effect of intracellular alkalinisation on intracellular Ca2+ homeostasis in a human chondrocyte cell line. European Journal of Physiology 444:744–751

    PubMed  CAS  Google Scholar 

  13. Browning JA, Wilkins RJ (2004) Mechanisms contributing to intracellular pH homeostasis in an immortalised human chondrocyte cell line. Comp Biochem Physiol A Mol Integr Physiol 137:409–418

    PubMed  CAS  Google Scholar 

  14. Brucker PU, Izzo NJ, Chu CR (2005) Tonic activation of hypoxia-inducible factor 1alpha in avascular articular cartilage and implications for metabolic homeostasis. Arthritis Rheum 52:3181–3191

    PubMed  CAS  Google Scholar 

  15. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167

    PubMed  CAS  Google Scholar 

  16. Bywaters E (1937) The metabolism of joint tissues. J Pathol Bacteriol 44:247–268

    CAS  Google Scholar 

  17. Cernanec J, Guilak F, Weinberg JB, Pisetsky DS, Fermor B (2002) Influence of hypoxia and reoxygenation on cytokine-induced production of proinflammatory mediators in articular cartilage. Arthritis Rheum 46:968–975

    PubMed  CAS  Google Scholar 

  18. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    PubMed  CAS  Google Scholar 

  19. Clark CC, Tolin BS, Brighton CT (1991) The effect of oxygen tension on proteoglycan synthesis and aggregation in mammalian growth plate chondrocytes. J Orthop Res 9:477–484

    PubMed  CAS  Google Scholar 

  20. Coimbra IB, Jimenez SA, Hawkins DF, Piera-Velazquez S, Stokes DG (2004) Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes. Osteoarthr Cartil 12:336–345

    PubMed  Google Scholar 

  21. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    PubMed  CAS  Google Scholar 

  22. Demin OV, Kholodenko BN, Skulachev VP (1998) A model of O2-generation in the complex III of the electron transport chain. Mol Cell Biochem 184:21–33

    PubMed  CAS  Google Scholar 

  23. Domm C, Schunke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil 10:13–22

    PubMed  CAS  Google Scholar 

  24. Doussiere J, Gaillard J, Vignais PV (1999) The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry 38:3694–3703

    PubMed  CAS  Google Scholar 

  25. Elima K, Vuorio E (1989) Expression of mRNAs for collagens and other matrix components in dedifferentiating and redifferentiating human chondrocytes in culture. FEBS Lett 258:195–198

    PubMed  CAS  Google Scholar 

  26. Falchuk KH, Goetzl EJ, Kulka JP (1970) Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am J Med 49:223–231

    PubMed  CAS  Google Scholar 

  27. Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB (2007) Oxygen, nitric oxide and articular cartilage. European Cells and Materials 13:56–65 (discussion 65)

    PubMed  CAS  Google Scholar 

  28. Ferrell WR, Najafipour H (1992) Changes in synovial PO2 and blood flow in the rabbit knee joint due to stimulation of the posterior articular nerve. J Physiol 449:607–617

    PubMed  CAS  Google Scholar 

  29. Gibson JS, Cossins AR, Ellory JC (2000) Oxygen-sensitive membrane transporters in vertebrate red cells. J Exp Biol 203(Pt 9):1395–1407

    PubMed  CAS  Google Scholar 

  30. Gille L, Nohl H (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys 388:34–38

    PubMed  CAS  Google Scholar 

  31. Grimmer C, Balbus N, Lang U, Aigner T, Cramer T, Muller L, Swoboda B, Pfander D (2006) Regulation of type II collagen synthesis during osteoarthritis by prolyl-4-hydroxylases: possible influence of low oxygen levels. Am J Pathol 169:491–502

    PubMed  CAS  Google Scholar 

  32. Grimshaw MJ, Mason RM (2000) Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthr Cartil 8:386–392

    PubMed  CAS  Google Scholar 

  33. Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng 9:133–199

    PubMed  CAS  Google Scholar 

  34. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    PubMed  CAS  Google Scholar 

  35. Hall AC (1995) Volume-sensitive taurine transport in bovine articular chondrocytes. J Physiol 484:755–766

    PubMed  CAS  Google Scholar 

  36. Hall AC (1999) Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes. J Cell Physiol 178:197–204

    PubMed  CAS  Google Scholar 

  37. Hall AC, O’Neill JR, Kerrigan MJ (2002) Differential mechanisms of intracellular pH (pHi) recovery following acid load to in situ bovine articular chondrocytes within different cartilage zones. J Physiol 544P:S108

    Google Scholar 

  38. Hall AC, Startks I, Shoults CL, Rashidbigi S (1996) Pathways for K+ transport across the bovine articular chondrocyte membrane and their sensitivity to cell volume. Am J Physiol 270:C1300–C1310

    PubMed  CAS  Google Scholar 

  39. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    PubMed  CAS  Google Scholar 

  40. Henderson GE, Mason RM (1991) Effect of oxygen tension on 35S-glycosaminoglycan synthesis and UDP-sugar pool size in articular cartilage. Biochem Soc Trans 19:364S

    PubMed  CAS  Google Scholar 

  41. Henrotin Y, Kurz B, Aigner T (2005) Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr Cartil 13:643–654

    PubMed  CAS  Google Scholar 

  42. Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11:747–755

    PubMed  CAS  Google Scholar 

  43. Heywood HK, Bader DL, Lee DA (2006) Rate of oxygen consumption by isolated articular chondrocytes is sensitive to medium glucose concentration. J Cell Physiol 206:402–410

    PubMed  CAS  Google Scholar 

  44. Hinterwimmer S, Krammer M, Krotz M, Glaser C, Baumgart R, Reiser M, Eckstein F (2004) Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum 50:2516–2520

    PubMed  CAS  Google Scholar 

  45. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    PubMed  Google Scholar 

  46. Jacoby RK, Jayson MI (1975) Proceedings: adult human articular cartilage in organ culture. Synthesis of glycosaminoglycan, effect of hyperoxia, and zonal variation of matrix synthesis. Ann Rheum Dis 34:468

    PubMed  CAS  Google Scholar 

  47. Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R (2000) Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 43:1560–1570

    PubMed  CAS  Google Scholar 

  48. Jortikka MO, Inkinen RI, Tammi MI, Parkkinen JJ, Haapala J, Kiviranta I, Helminen HJ, Lammi MJ (1997) Immobilisation causes long-lasting matrix changes both in the immobilised and contralateral joint cartilage. Ann Rheum Dis 56:255–261

    Article  PubMed  CAS  Google Scholar 

  49. Kiaer T, Gronlund J, Sorensen KH (1988) Subchondral pO2, pCO2, pressure, pH, and lactate in human osteoarthritis of the hip. Clin Orthop Relat Res 229:149–155, April

    Google Scholar 

  50. Kovac L (1974) Biochemical mutants: an approach to mitochondrial energy coupling. Biochim Biophys Acta 346:101–135

    PubMed  CAS  Google Scholar 

  51. Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8:1–34

    PubMed  CAS  Google Scholar 

  52. Lane JM, Brighton CT, Menkowitz BJ (1977) Anaerobic and aerobic metabolism in articular cartilage. J Rheumatol 4:334–342

    PubMed  CAS  Google Scholar 

  53. Lee RB, Urban JPG (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102

    PubMed  CAS  Google Scholar 

  54. Lee RB, Urban JPG (2002) Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum 46:3190–3200

    PubMed  CAS  Google Scholar 

  55. Lemare F, Steimberg N, Le Griel C, Demignot S, Adolphe M (1998) Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1beta. J Cell Physiol 176:303–313

    PubMed  CAS  Google Scholar 

  56. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–355

    PubMed  CAS  Google Scholar 

  57. Levick JR (1990) Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 17:579–582

    PubMed  CAS  Google Scholar 

  58. Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2:217–233

    PubMed  CAS  Google Scholar 

  59. Lin C, McGough R, Aswad B, Block JA, Terek R (2004) Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 22:1175–1181

    PubMed  CAS  Google Scholar 

  60. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13:769–776

    PubMed  CAS  Google Scholar 

  61. Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23:175–194

    PubMed  CAS  Google Scholar 

  62. Malda J, van Blitterswijk CA, van Geffen M, Martens DE, Tramper J, Riesle J (2004) Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthr Cartil 12:306–313

    PubMed  CAS  Google Scholar 

  63. Malda J, van den Brink P, Meeuwse P, Grojec M, Martens DE, Tramper J, Riesle J, van Blitterswijk CA (2004) Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng 10:987–994

    PubMed  CAS  Google Scholar 

  64. Marcus RE (1973) The effect of low oxygen concentration on growth, glycolysis, and sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum 16:646–656

    PubMed  CAS  Google Scholar 

  65. Maroudas A (1979) Physico-chemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, London, pp 215–290

    Google Scholar 

  66. Maroudas A (1980) Metabolism of cartilaginous tissues: a methodological approach. In: Maroudas A, Holborow EJ (eds) Studies of joint disease. Pitman, Tunbridge Wells, pp 59–86

    Google Scholar 

  67. Martin G, Bogdanowicz P, Domagala F, Ficheux H, Pujol JP (2004) Articular chondrocytes cultured in hypoxia: their response to interleukin-1beta and rhein, the active metabolite of diacerhein. Biorheology 41:549–561

    PubMed  CAS  Google Scholar 

  68. Mayne R, Vail MS, Miller EJ (1976) The effect of embryo extract on the types of collagen synthesized by cultured chick chondrocytes. Dev Biol 54:230–240

    PubMed  CAS  Google Scholar 

  69. McNulty AL, Stabler TV, Vail TP, McDaniel GE, Kraus VB (2005) Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. Arthritis Rheum 52:2676–2685

    PubMed  CAS  Google Scholar 

  70. Meredith D, Bell P, McClure B, Wilkins R (2002) Functional and molecular characterisation of lactic acid transport in bovine articular chondrocytes. Cell Physiol Biochem 12:227–234

    PubMed  CAS  Google Scholar 

  71. Meredith D, Gehl KA, Seymour J, Ellory JC, Wilkins RJ (2007) Characterization of sulphate transporters in isolated bovine articular chondrocytes. J Orthop Res (in press)

  72. Mignotte F, Champagne AM, Froger-Gaillard B, Benel L, Gueride M, Adolphe M, Mounolou JC (1991) Mitochondrial biogenesis in rabbit articular chondrocytes transferred to culture. Biol Cell 71:67–72

    PubMed  CAS  Google Scholar 

  73. Milner PI, Fairfax TP, Browning JA, Wilkins RJ, Gibson JS (2006) The effect of O2 tension on pH homeostasis in equine articular chondrocytes. Arthritis Rheum 54:3523–3532

    PubMed  CAS  Google Scholar 

  74. Milner PI, Wilkins RJ, Gibson JS (2007) The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes. Osteoarthr Cartil 15(7):735–742

    PubMed  CAS  Google Scholar 

  75. Mobasheri A, Platt N, Thorpe C, Shakibaei M (2006) Regulation of 2-deoxy-d-glucose transport, lactate metabolism, and MMP-2 secretion by the hypoxia mimetic cobalt chloride in articular chondrocytes. Ann N Y Acad Sci 1091:83–93

    PubMed  CAS  Google Scholar 

  76. Murphy CL, Polak JM (2004) Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol 199:451–459

    PubMed  CAS  Google Scholar 

  77. Najafipour H, Ferrell WR (1995) Comparison of synovial PO2 and sympathetic vasoconstrictor responses in normal and acutely inflamed rabbit knee joints. Exp Physiol 80:209–220

    PubMed  CAS  Google Scholar 

  78. Okun JG, Lummen P, Brandt U (1999) Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274:2625–2630

    PubMed  CAS  Google Scholar 

  79. Otte P (1991) Basic cell metabolism of articular cartilage. Manometric studies. Zeitschrift fur Rheumatologie 50:304–312

    PubMed  CAS  Google Scholar 

  80. Pfander D, Cramer T, Schipani E, Johnson RS (2003) HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes. J Cell Sci 116:1819–1826

    PubMed  CAS  Google Scholar 

  81. Ponte MT (1996) Calcium homeostasis in articular chondrocytes and its role in matrix synthesis. University of Oxford, Oxford

    Google Scholar 

  82. Ponte MT, Hall AC (1994) Effect of extracellular Ca2+ and Na+ on [Ca2+]i of porcine articular chondrocytes. J Physiol 475P:105

    Google Scholar 

  83. Pufe T, Lemke A, Kurz B, Petersen W, Tillmann B, Grodzinsky AJ, Mentlein R (2004) Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol 164:185–192

    PubMed  CAS  Google Scholar 

  84. Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM (1996) Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol 168:424–432

    PubMed  CAS  Google Scholar 

  85. Rosenthal O, Bowie MA, Wagoner G (1941) Studies in the metabolism of articular cartilage. I. Respiration and glycolysis of cartilage in relation to its age. J Cell Comp Physiol 17:221–233

    CAS  Google Scholar 

  86. Saini S, Wick TM (2004) Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng 10:825–832

    PubMed  CAS  Google Scholar 

  87. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    PubMed  CAS  Google Scholar 

  88. Sanchez JC, Danks TA, Wilkins RJ (2003) Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes. Gen Physiol Biophys 22:487–500

    PubMed  CAS  Google Scholar 

  89. Sanchez JC, Powell T, Staines HM, Wilkins RJ (2006) Electrophysiological demonstration of Na+/Ca2+ exchange in bovine articular chondrocytes. Biorheology 43:83–94

    PubMed  CAS  Google Scholar 

  90. Sanchez JC, Powell T, Staines HM, Wilkins RJ (2006) Electrophysiological demonstration of voltage-activated H+ channels in bovine articular chondrocytes. Cell Physiol Biochem 18:85–90

    PubMed  CAS  Google Scholar 

  91. Sanchez JC, Wilkins RJ (2003) Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 135:575–583

    PubMed  CAS  Google Scholar 

  92. Sanchez JC, Wilkins RJ (2004) Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 137:173–182

    PubMed  Google Scholar 

  93. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865–2876

    PubMed  CAS  Google Scholar 

  94. Schneider N, Mouithys-Mickalad A, Lejeune JP, Duyckaerts C, Sluse F, Deby-Dupont G, Serteyn D (2007) Oxygen consumption of equine articular chondrocytes: influence of applied oxygen tension and glucose concentration during culture. Cell Biol Int 31(9):878–886

    PubMed  CAS  Google Scholar 

  95. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    PubMed  CAS  Google Scholar 

  96. Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond 271:261–272

    CAS  Google Scholar 

  97. Solomon DH, Wilkins RJ, Meredith D, Browning JA (2007) Characterisation of inorganic phosphate transport in bovine articular chondrocytes. Cell Physiol Biochem 20:99–108

    PubMed  CAS  Google Scholar 

  98. Stevens CR, Blake DR, Merry P, Revell PA, Levick JR (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34:1508–1513

    Article  PubMed  CAS  Google Scholar 

  99. Stevens CR, Williams RB, Farrell AJ, Blake DR (1991) Hypoxia and inflammatory synovitis: observations and speculation. Ann Rheum Dis 50:124–132

    Article  PubMed  CAS  Google Scholar 

  100. Stockwell R (1991) Cartilage failure in osteoarthritis: Relevance of structure and function. A review. Clin Anat 4:161–191

    Google Scholar 

  101. Stockwell RA (1983) Metabolism of cartilage. In: Hall BK (ed) Cartilage: molecular aspects. Academic, New York, pp 253–280

    Google Scholar 

  102. Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y (1988) Mechanism of O2-generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936:377–385

    PubMed  CAS  Google Scholar 

  103. Swietach P, Browning JA, Wilkins RJ (2002) Functional and moecular determination of carbonic anhydrase levels in bovine and cultured human chondrocytes. Comp Biochem Physiol 133:427–435

    Google Scholar 

  104. Tattersall A, Meredith D, Furla P, Shen MR, Ellory C, Wilkins R (2003) Molecular and functional identification of the Na(+)/H(+) exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes. Cell Physiol Biochem 13:215–222

    PubMed  CAS  Google Scholar 

  105. Tattersall AL, Browning JA, Wilkins RJ (2005) Modulation of H+ transport mechanisms by interleukin-1 in isolated bovine articular chondrocytes. Cell Physiol Biochem 16:43–50

    PubMed  CAS  Google Scholar 

  106. Thomas WJ, Thomas DL, Knezetic JA, Adrian TE (2002) The role of oxygen-derived free radicals and nitric oxide in cytokine-induced antiproliferation of pancreatic cancer cells. Pancreas 24:161–168

    PubMed  Google Scholar 

  107. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  108. Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    PubMed  CAS  Google Scholar 

  109. Urban JP, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154:262–270

    PubMed  CAS  Google Scholar 

  110. Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46:2073–2078

    PubMed  CAS  Google Scholar 

  111. von der Mark K, Conrad G (1979) Cartilage cell differentiation: review. Clin Orthop Relat Res:185–205

  112. Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139:S70–S85

    PubMed  CAS  Google Scholar 

  113. Watt FM (1988) Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 89(Pt 3):373–378

    PubMed  Google Scholar 

  114. Wendt D, Stroebel S, Jakob M, John GT, Martin I (2006) Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology 43:481–488

    PubMed  CAS  Google Scholar 

  115. White R, Wilkins RJ, Gibson JS (2006) Effect of O2 tension on Ca2+ homeostasis in bovine articular chondrocytes. Proc Physiol Soc 3:PC3

    Google Scholar 

  116. Wilkins RJ, Browning JA, Ellory JC (2000) Surviving in a matrix: membrane transport in articular chondrocytes. J Membr Biol 177:95–108

    PubMed  CAS  Google Scholar 

  117. Wilkins RJ, Browning JA, Urban JP (2000) Chondrocyte regulation by mechanical load. Biorheology 37:67–74

    PubMed  CAS  Google Scholar 

  118. Wilkins RJ, Hall AC (1992) Measurement of intracellular pH in isolated bovine articular chondrocytes. Exp Physiol 77:521–524

    PubMed  CAS  Google Scholar 

  119. Wilkins RJ, Hall AC (1993) Bovine articular chondrocytes demonstrate only minimal bicarbonate-dependent recovery from changes to intracellular pH. J Physiol 459:289P

    Google Scholar 

  120. Wilkins RJ, Hall AC (1995) Control of matrix synthesis in isolated bovine chondrocytes by extracellular and intracellular pH. J Cell Physiol 164:474–481

    PubMed  CAS  Google Scholar 

  121. Windhaber RA, Wilkins RJ, Meredith D (2003) Functional characterisation of glucose transport in bovine articular chondrocytes. Pflugers Arch 446:572–577

    PubMed  CAS  Google Scholar 

  122. Yamazaki N, Browning JA, Wilkins RJ (2000) Modulation of Na(+) x H(+) exchange by osmotic shock in isolated bovinearticular chondrocytes. Acta Physiol Scand 169:221–228

    PubMed  CAS  Google Scholar 

  123. Yellowley CE, Jacobs CR, Donahue HJ (1999) Mechanisms contributing to fluid-flow-induced Ca2+ mobilization in articular chondrocytes. J Cell Physiol 180:402–408

    PubMed  CAS  Google Scholar 

  124. Ysart GE, Mason RM (1994) Responses of articular cartilage explant cultures to different oxygen tensions. Biochim Biophys Acta 1221:15–20

    PubMed  CAS  Google Scholar 

  125. Yudoh K, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K (2005) Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1 alpha in articular chondrocytes: involvement of HIF-1 alpha in the pathogenesis of osteoarthritis. Arthritis Res Ther 7:R904–R914

    PubMed  CAS  Google Scholar 

  126. Zhou S, Chiu Z, Urban JPG (2004) Factors affecting the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modelling study. Arthritis Rheum 50:3915–3924

    PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful for financial support from the BBSRC, the Royal Society and the Sir Halley Stewart Trust. During this work, PIM was funded at Cambridge by a Veterinary Research Training Scholarship from the Horserace Betting Levy Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Wilkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, J.S., Milner, P.I., White, R. et al. Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch - Eur J Physiol 455, 563–573 (2008). https://doi.org/10.1007/s00424-007-0310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0310-7

Keywords

Navigation