Skip to main content

Advertisement

Log in

Functional properties of human neuronal Kv11 channels

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Kv11 potassium channels are important for regulation of the membrane potential. Kv11.2 and Kv11.3 are primarily found in the nervous system, where they most likely are involved in the regulation of neuronal excitability. Two isoforms of human Kv11.2 have been published so far. Here, we present a new splice variant that is present in human brain as demonstrated by reverse transcription PCR. Heterologous expression in Xenopus laevis oocytes revealed a 30-mV shift in the voltage dependence of activation to more depolarized potentials and slower activation together with faster deactivation kinetics compared to hKv11.1. Further, we have cloned and electrophysiologically characterized two splice variants of hKv11.3. When expressed in X. laevis oocytes, both isoform 1 and isoform 2 elicited robust currents with a striking transient current component caused by delayed inactivation. The different current characteristics of the isoforms presented in this work may contribute to the regulation of neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Larsen AP, Olesen S-P, Grunnet M, Jespersen T (2008) Characterization of hERG1a and hERG1b potassium channels—a possible role for hERG1b in the IKr current. Pflugers Arch 456:1137–1148

    Article  PubMed  CAS  Google Scholar 

  3. Aydar E, Palmer C (2001) Functional characterization of the C-terminus of the human ether-a-go-go-related gene K(+) channel (HERG). J Physiol 534:1–14

    Article  PubMed  CAS  Google Scholar 

  4. Aydar E, Palmer C (2006) Expression and functional characterization of the human ether-a-go-go-related gene (HERG) K+ channel cardiac splice variant in Xenopus laevis oocytes. J Membr Biol 211:115–126

    Article  PubMed  CAS  Google Scholar 

  5. Bauer CK, Wulfsen I, Schafer R, Glassmeier G, Wimmers S, Flitsch J, Ludecke DK, Schwarz JR (2003) HERG K(+) currents in human prolactin-secreting adenoma cells. Pflugers Arch 445:589–600

    PubMed  CAS  Google Scholar 

  6. Bian JS, Kagan A, McDonald TV (2004) Molecular analysis of PIP2 regulation of HERG and IKr. Am J Physiol Heart Circ Physiol 287:H2154–H2163

    Article  PubMed  CAS  Google Scholar 

  7. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501(Pt 2):313–318

    Article  PubMed  CAS  Google Scholar 

  8. Elmedyb P, Olesen SP, Grunnet M (2007) Activation of ERG2 potassium channels by the diphenylurea NS1643. Neuropharmacology 53:283–294

    Article  PubMed  CAS  Google Scholar 

  9. Emmi A, Wenzel HJ, Schwartzkroin PA, Taglialatela M, Castaldo P, Bianchi L, Nerbonne J, Robertson GA, Janigro D (2000) Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J Neurosci 20:3915–3925

    PubMed  CAS  Google Scholar 

  10. Farrelly AM, Ro S, Callaghan BP, Khoyi MA, Fleming N, Horowitz B, Sanders KM, Keef KD (2003) Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol 284:G883–G895

    PubMed  CAS  Google Scholar 

  11. Fernandez D, Sargent J, Sachse FB, Sanguinetti MC (2008) Structural basis for ether-a-go-go-related gene K+ channel subtype-dependent activation by niflumic acid. Mol Pharmacol 73:1159–1167

    Google Scholar 

  12. Ganetzky B, Robertson GA, Wilson GF, Trudeau MC, Titus SA (1999) The eag family of K+ channels in Drosophila and mammals. Ann N Y Acad Sci 868:356–369

    Article  PubMed  CAS  Google Scholar 

  13. Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+channels. Pflugers Arch 441:544–550

    Article  PubMed  CAS  Google Scholar 

  14. Guasti L, Cilia E, Crociani O, Hofmann G, Polvani S, Becchetti A, Wanke E, Tempia F, Arcangeli A (2005) Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J Comp Neurol 491:157–174

    Article  PubMed  CAS  Google Scholar 

  15. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  16. Jones EM, Roti Roti EC, Wang J, Delfosse SA, Robertson GA (2004) Cardiac IKr channels minimally comprise hERG 1a and 1b subunits. J Biol Chem 279:44690–44694

    Article  PubMed  CAS  Google Scholar 

  17. Kupershmidt S, Snyders DJ, Raes A, Roden DM (1998) A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current. J Biol Chem 273:27231–27235

    Article  PubMed  CAS  Google Scholar 

  18. Kupershmidt S, Yang T, Chanthaphaychith S, Wang Z, Towbin JA, Roden DM (2002) Defective human Ether-a-go-go-related gene trafficking linked to an endoplasmic reticulum retention signal in the C terminus. J Biol Chem 277:27442–27448

    Article  PubMed  CAS  Google Scholar 

  19. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  PubMed  CAS  Google Scholar 

  20. London B, Trudeau MC, Newton KP, Beyer AK, Copeland NG, Gilbert DJ, Jenkins NA, Satler CA, Robertson GA (1997) Two isoforms of the mouse ether-a-go-go related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier k+ current. Circ Res 81:870–878

    PubMed  CAS  Google Scholar 

  21. Mewe M, Wulfsen I, Schuster A, Middendorff R, Glassmeier G, Schwarz JR, Bauer CK (2008) Erg K+ channels modulate contractile activity in the bovine epididymal duct. Am J Physiol Regul Integr Comp Physiol 294:R895–R904

    PubMed  CAS  Google Scholar 

  22. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 97:12329–12333

    Article  PubMed  CAS  Google Scholar 

  23. Muhlbauer E, Bazwinsky I, Wolgast S, Klemenz A, Peschke E (2007) Circadian changes of ether-a-go-go-related-gene (Erg) potassium channel transcripts in the rat pancreas and beta-cell. Cell Mol Life Sci 64:768–780

    Article  PubMed  CAS  Google Scholar 

  24. Nedergaard S (2004) A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons. Neuroscience 125:841–852

    Article  PubMed  CAS  Google Scholar 

  25. Papa M, Boscia F, Canitano A, Castaldo P, Sellitti S, Annunziato L, Taglialatela M (2003) Expression pattern of the ether-a-gogo-related (ERG) K+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system. J Comp Neurol 466:119–135

    Article  PubMed  CAS  Google Scholar 

  26. Restano-Cassulini R, Korolkova YV, Diochot S, Gurrola G, Guasti L, Possani LD, Lazdunski M, Grishin EV, Arcangeli A, Wanke E (2006) Species diversity and peptide toxins blocking selectivity of ether-a-go-go-related gene subfamily K+ channels in the central nervous system. Mol Pharmacol 69:1673–1683

    Article  PubMed  CAS  Google Scholar 

  27. Sacco T, Bruno A, Wanke E, Tempia F (2003) Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 90:1817–1828

    Article  PubMed  Google Scholar 

  28. Saganich MJ, Machado E, Rudy B (2001) Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 21:4609–4624

    PubMed  CAS  Google Scholar 

  29. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 532:143–163

    Article  PubMed  CAS  Google Scholar 

  30. Shi W, Wymore RS, Wang HS, Pan Z, Cohen IS, McKinnon D, Dixon JE (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 17:9423–9432

    PubMed  CAS  Google Scholar 

  31. Shoeb F, Malykhina AP, Akbarali HI (2003) Cloning and functional characterization of the smooth muscle ether-a-go-go-related gene K+ channel. Potential role of a conserved amino acid substitution in the S4 region. J Biol Chem 278:2503–2514

    Article  PubMed  CAS  Google Scholar 

  32. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC (1996) Fast inactivation causes rectification of the IKr channel. J Gen Physiol 107:611–619

    Article  PubMed  CAS  Google Scholar 

  33. Sturm P, Wimmers S, Schwarz JR, Bauer CK (2005) Extracellular potassium effects are conserved within the rat erg K+ channel family. J Physiol 564:329–345

    Article  PubMed  CAS  Google Scholar 

  34. Wimmers S, Bauer CK, Schwarz JR (2002) Biophysical properties of heteromultimeric erg K+ channels. Pflugers Arch 445:423–430

    Article  PubMed  Google Scholar 

  35. Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR (2000) Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J Neuroendocrinol 12:263–272

    Article  PubMed  CAS  Google Scholar 

  36. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS (1997) Tissue and species distribution of mRNA for the IKr-like K+ channel, erg. Circ Res 80:261–268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Danish National Research Foundation (NS, KE) and the Novo Nordisk Foundation (SPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einarsen, K., Calloe, K., Grunnet, M. et al. Functional properties of human neuronal Kv11 channels. Pflugers Arch - Eur J Physiol 458, 689–700 (2009). https://doi.org/10.1007/s00424-009-0651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0651-5

Keywords

Navigation