Skip to main content

Advertisement

Log in

Ciliar functions in the nephron

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The primary cilium is a microtubule-based nonmotile organelle that is found on most cells in the mammalian body. Once regarded as a vestigial organelle, it has been recently shown to play unforeseen roles in mammalian physiology and tissue homeostasis. In kidney epithelial cells, the primary cilium plays a fundamental role in tubule organization and function and it is now considered to serve as a versatile mechanosensor and chemosensor. Diseases related to kidney primary cilia include autosomal polycystic kidney disease, recessive polycystic kidney disease, Bardet–Biedl syndrome, and nephronophthisis. Multiple proteins whose functions are disrupted in cystic kidney diseases have been localized in the primary cilium. This review provides a general introduction to the cell biology and function of renal primary cilia and an overview of cilia-related kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alenghat FJ, Nauli SM, Kolb R, Zhou J, Ingber DE (2004) Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 301:23–30

    Article  PubMed  CAS  Google Scholar 

  2. Bae YK, Barr MM (2008) Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Front Biosci 13:5959–5974

    Article  PubMed  CAS  Google Scholar 

  3. Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479

    Article  PubMed  CAS  Google Scholar 

  4. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389

    PubMed  CAS  Google Scholar 

  5. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel–Gruber-like syndrome, situs inversus, and renal–hepatic–pancreatic dysplasia. Am J Hum Genet 82:959–970

    Article  PubMed  CAS  Google Scholar 

  6. Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872:271–275

    Article  PubMed  CAS  Google Scholar 

  7. Calvet JP (2002) Cilia in PKD—letting it all hang out. J Am Soc Nephrol 13:2614–2616

    PubMed  Google Scholar 

  8. Calvet JP (2003) New insights into ciliary function: kidney cysts and photoreceptors. Proc Natl Acad Sci U S A 100:5583–5585

    Article  PubMed  CAS  Google Scholar 

  9. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021

    Article  PubMed  CAS  Google Scholar 

  10. Deane JA, Ricardo SD (2007) Polycystic kidney disease and the renal cilium. Nephrology (Carlton) 12:559–564

    Article  CAS  Google Scholar 

  11. Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118:145–148

    Article  PubMed  CAS  Google Scholar 

  12. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451:264–276

    Article  PubMed  CAS  Google Scholar 

  13. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742

    PubMed  CAS  Google Scholar 

  14. Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271:119–133

    PubMed  CAS  Google Scholar 

  15. Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, Lin X, Meehan TP, Stockton DW, Wu SM, Lindsay E, Justice MJ, Beales PL, Katsanis N, Lupski JR (2006) Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet 120:211–226

    Article  PubMed  CAS  Google Scholar 

  16. Esteban MA, Harten SK, Tran MG, Maxwell PH (2006) Formation of primary cilia in the renal epithelium is regulated by the von Hippel–Lindau tumor suppressor protein. J Am Soc Nephrol 17:1801–1806

    Article  PubMed  CAS  Google Scholar 

  17. Fliegauf M, Horvath J, von Schnakenburg C, Olbrich H, Muller D, Thumfart J, Schermer B, Pazour GJ, Neumann HP, Zentgraf H, Benzing T, Omran H (2006) Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol 17:2424–2433

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher AR, Obermuller N, Cedzich A, Gretz N, Witzgall R (2000) An ever-expanding story of cyst formation. Cell Tissue Res 300:361–371

    Article  PubMed  CAS  Google Scholar 

  19. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395

    Article  PubMed  CAS  Google Scholar 

  20. Geyti CS, Odgaard E, Overgaard MT, Jensen ME, Leipziger J, Praetorius HA (2008) Slow spontaneous [Ca2+] i oscillations reflect nucleotide release from renal epithelia. Pflugers Arch 455:1105–1117

    Article  PubMed  CAS  Google Scholar 

  21. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honore E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    Article  PubMed  CAS  Google Scholar 

  22. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994

    Article  PubMed  CAS  Google Scholar 

  23. Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hollt V (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89:909–926

    Article  PubMed  CAS  Google Scholar 

  24. Harden TK, Lazarowski ER, Boucher RC (1997) Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 18:43–46

    Article  PubMed  CAS  Google Scholar 

  25. Harris PC, Torres VE (2008) Polycystic kidney disease. Annu Rev Med (in press)

  26. Hildebrandt F (1999) Juvenile nephronophthisis. In: Avner E, Holliday M, Barrat T (eds) Pediatric nephrology. Williams & Wilkins, Baltimore

  27. Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    Article  PubMed  CAS  Google Scholar 

  28. Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1360

    Article  PubMed  CAS  Google Scholar 

  29. Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D’Eustachio P, Beier DR, Guay-Woodford LM (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109:533–540

    PubMed  CAS  Google Scholar 

  30. Hovater MB, Olteanu D, Hanson EL, Cheng NL, Siroky B, Fintha A, Komlosi P, Liu W, Satlin LM, Bell PD, Yoder BK, Schwiebert EM (2008) Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals. Purinergic Signal 4:155–170

    Article  PubMed  CAS  Google Scholar 

  31. Insel PA, Ostrom RS, Zambon AC, Hughes RJ, Balboa MA, Shehnaz D, Gregorian C, Torres B, Firestein BL, Xing M, Post SR (2001) P2Y receptors of MDCK cells: epithelial cell regulation by extracellular nucleotides. Clin Exp Pharmacol Physiol 28:351–354

    Article  PubMed  CAS  Google Scholar 

  32. Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J (2007) Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18:2062–2070

    Article  PubMed  CAS  Google Scholar 

  33. Joly D, Hummel A, Ruello A, Knebelmann B (2003) Ciliary function of polycystins: a new model for cystogenesis. Nephrol Dial Transplant 18:1689–1692

    Article  PubMed  CAS  Google Scholar 

  34. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, Leitch CC, Venner K, Ansley SJ, Ross AJ, Leroux MR, Katsanis N, Beales PL (2004) The Bardet–Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36:462–470

    Article  PubMed  CAS  Google Scholar 

  35. Kolb RJ, Nauli SM (2008) Ciliary dysfunction in polycystic kidney disease: an emerging model with polarizing potential. Front Biosci 13:4451–4466

    Article  PubMed  CAS  Google Scholar 

  36. Kolb RJ, Woost PG, Hopfer U (2004) Membrane trafficking of angiotensin receptor type-1 and mechanochemical signal transduction in proximal tubule cells. Hypertension 44:352–359

    Article  PubMed  CAS  Google Scholar 

  37. Kotsis F, Nitschke R, Boehlke C, Bashkurov M, Walz G, Kuehn EW (2007) Ciliary calcium signaling is modulated by kidney injury molecule-1 (Kim1). Pflugers Arch 453:819–829

    Article  PubMed  CAS  Google Scholar 

  38. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  PubMed  CAS  Google Scholar 

  39. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523

    Article  PubMed  CAS  Google Scholar 

  40. Latta H, Maunsbach AB, Madden SC (1961) Cilia in different segments of the rat nephron. J Biophys Biochem Cytol 11:248–252

    Article  PubMed  CAS  Google Scholar 

  41. Lutz MS, Burk RD (2006) Primary cilium formation requires von Hippel–Lindau gene function in renal-derived cells. Cancer Res 66:6903–6907

    Article  PubMed  CAS  Google Scholar 

  42. Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci U S A 95:7174–7178

    Article  PubMed  CAS  Google Scholar 

  43. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    Article  PubMed  CAS  Google Scholar 

  44. Mokrzan EM, Lewis JS, Mykytyn K (2007) Differences in renal tubule primary cilia length in a mouse model of Bardet–Biedl syndrome. Nephron Exp Nephrol 106:e88–e96

    Article  PubMed  Google Scholar 

  45. Morgan D, Eley L, Sayer J, Strachan T, Yates LM, Craighead AS, Goodship JA (2002) Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum Mol Genet 11:3345–3350

    Article  PubMed  CAS  Google Scholar 

  46. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left–right axis determination. Development 127:2347–2355

    PubMed  CAS  Google Scholar 

  47. Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC (2004) Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci U S A 101:8664–8669

    Article  PubMed  CAS  Google Scholar 

  48. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  49. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, Andorf JL, Mykytyn K, Swiderski RE, Yang B, Carmi R, Stone EM, Sheffield VC (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101:16588–16593

    Article  PubMed  CAS  Google Scholar 

  51. Ong AC, Wheatley DN (2003) Polycystic kidney disease—the ciliary connection. Lancet 361:774–776

    Article  PubMed  CAS  Google Scholar 

  52. Ortega HA, Vega Nde A, Santos BQ, Maia GT (2007) Primary ciliary dyskinesia: considerations regarding six cases of Kartagener syndrome. J Bras Pneumol 33:602–608

    Article  PubMed  Google Scholar 

  53. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1:451–465

    Article  PubMed  CAS  Google Scholar 

  54. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nat Genet 34:413–420

    Article  PubMed  CAS  Google Scholar 

  55. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  PubMed  CAS  Google Scholar 

  56. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  PubMed  CAS  Google Scholar 

  57. Pfaller W, Klima J (1976) A critical reevaluation of the structure of the rat uriniferous tubule as revealed by scanning electron microscopy. Cell Tissue Res 166:91–100

    Article  PubMed  CAS  Google Scholar 

  58. Praetorius HA, Praetorius J, Nielsen S, Frokiaer J, Spring KR (2004) Beta1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am J Physiol Renal Physiol 287:F969–F978

    Article  PubMed  CAS  Google Scholar 

  59. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  60. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76

    Article  PubMed  CAS  Google Scholar 

  61. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–20

    Article  PubMed  Google Scholar 

  62. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    Article  PubMed  CAS  Google Scholar 

  63. Praetorius J, Spring KR (2002) Specific lectins map the distribution of fibronectin and beta 1-integrin on living MDCK cells. Exp Cell Res 276:52–62

    Article  PubMed  CAS  Google Scholar 

  64. Resnick A, Hopfer U (2007) Force–response considerations in ciliary mechanosensation. Biophys J 93:1380–1390

    Article  PubMed  CAS  Google Scholar 

  65. Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, Desdouets C (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120:628–637

    Article  PubMed  CAS  Google Scholar 

  66. Roth KE, Rieder CL, Bowser SS (1988) Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9+0) cilia in cultured kidney epithelia. J Cell Sci 89(Pt 4):457–466

    PubMed  Google Scholar 

  67. Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129:687–693

    Article  PubMed  CAS  Google Scholar 

  68. Satlin LM, Sheng S, Woda CB, Kleyman TR (2001) Epithelial Na(+) channels are regulated by flow. Am J Physiol Renal Physiol 280:F1010–F1018

    PubMed  CAS  Google Scholar 

  69. Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272:F132–F138

    PubMed  CAS  Google Scholar 

  70. Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713

    Article  PubMed  CAS  Google Scholar 

  71. Simons M, Walz G (2006) Polycystic kidney disease: cell division without a c(l)ue? Kidney Int 70:854–864

    Article  PubMed  CAS  Google Scholar 

  72. Sjaastad MD, Lewis RS, Nelson WJ (1996) Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell 7:1025–1041

    PubMed  CAS  Google Scholar 

  73. Straughn JM Jr, Shaw DR, Guerrero A, Bhoola SM, Racelis A, Wang Z, Chiriva-Internati M, Grizzle WE, Alvarez RD, Lim SH, Strong TV (2004) Expression of sperm protein 17 (Sp17) in ovarian cancer. Int J Cancer 108:805–811

    Article  PubMed  CAS  Google Scholar 

  74. Sutters M, Germino GG (2003) Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 141:91–101

    Article  PubMed  CAS  Google Scholar 

  75. Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left–right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12:589–599

    PubMed  CAS  Google Scholar 

  76. Torres VE, Harris PC (2003) Autosomal dominant polycystic kidney disease. Nefrologia 23(Suppl 1):14–22

    PubMed  Google Scholar 

  77. Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, Roberts KA, Zhou J (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    Article  PubMed  CAS  Google Scholar 

  78. Watnick T, Germino G (2003) From cilia to cyst. Nat Genet 34:355–356

    Article  PubMed  CAS  Google Scholar 

  79. Williams PL, Warwick P, Dyson M, Bannister LH (1989) Cells and tissues, 37rd edn. Churchill Livingstone, Edinburgh, pp 31–33

    Google Scholar 

  80. Williams PL, Dyson M, Bannister LH (1989) Cells and tissues. Gray’s anatomy, 37rd edn. Churchill Livingstone, London, pp 31–33

    Google Scholar 

  81. Woda CB, Leite M Jr, Rohatgi R, Satlin LM (2002) Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct. Am J Physiol Renal Physiol 283:F437–F446

    PubMed  CAS  Google Scholar 

  82. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    Article  PubMed  CAS  Google Scholar 

  83. Wu G, Somlo S (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69:1–15

    Article  PubMed  CAS  Google Scholar 

  84. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388

    Article  PubMed  CAS  Google Scholar 

  85. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

  86. Yoder BK, Richards WG, Sweeney WE, Wilkinson JE, Avener ED, Woychik RP (1995) Insertional mutagenesis and molecular analysis of a new gene associated with polycystic kidney disease. Proc Assoc Am Physicians 107:314–323

    PubMed  CAS  Google Scholar 

  87. Zerres K, Mucher G, Becker J, Steinkamm C, Rudnik-Schoneborn S, Heikkila P, Rapola J, Salonen R, Germino GG, Onuchic L, Somlo S, Avner ED, Harman LA, Stockwin JM, Guay-Woodford LM (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144

    Article  PubMed  CAS  Google Scholar 

  88. Zerres K, Rudnik-Schoneborn S, Mucher G (1996) Autosomal recessive polycystic kidney disease: clinical features and genetics. Adv Nephrol Necker Hosp 25:147–157

    PubMed  CAS  Google Scholar 

  89. Zhang D, Freedman BI, Flekac M, Santos E, Hicks PJ, Bowden DW, Efendic S, Brismar K, Gu HF (2008) Evaluation of Genetic Association and Expression Reduction of TRPC1 in the Development of Diabetic Nephropathy. Am J Nephrol 29:244–251

    Article  PubMed  CAS  Google Scholar 

  90. Zimmermann KW (1898) Beiträge zur Kenntnis einiger Drüsen und Epithelien. Arch Mikrosk Anat Entwickl.mech 52:552–706

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the ANR-05-Neuro, ANR-05-PCOD, ANR-2008-Genopat, ANR 2008-MNP, ARCInca-2006, Fondation pour la Recherche Médicale, Fondation Schlumberger, Action Concertée Incitative Jeunes Chercheurs, UPSA, CNRS, and French Ministry for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Rodat-Despoix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodat-Despoix, L., Delmas, P. Ciliar functions in the nephron. Pflugers Arch - Eur J Physiol 458, 179–187 (2009). https://doi.org/10.1007/s00424-008-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0632-0

Keywords

Navigation