Skip to main content

Advertisement

Log in

ATP activates P2x receptors and requires extracellular Ca++ participation to modify outer hair cell nonlinear capacitance

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), suramin, and 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca++ participation. Removal of extracellular Ca++ abolished the ATP effect. However, chelation of intracellular Ca++ concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K+ ions. Substitution of Cs+ for intracellular or extracellular K+ did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca++ is required for this modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bobbin RP, Thompson MH (1978) Effects of putative transmitters on afferent cochlear transmission. Ann Otol Rhinol Larygnol 87:185–190

    CAS  Google Scholar 

  2. Kujawa SG, Erostegui C, Fallon M, Crist J, Bobbin RP (1994) Effects of adenosine 5′-triphosphate and related agonists on cochlear function. Hear Res 76:87–100

    Article  PubMed  CAS  Google Scholar 

  3. Munoz DJ, Thorne PR, Housley GD, Billett TE, Battersby JM (1995) Extracellular adenosine 5′-triphosphate (ATP) in the endolymphatic compartment influences cochlear function. Hear Res 90:106–118

    Article  PubMed  CAS  Google Scholar 

  4. Munoz DJ, Thorne PR, Housley GD (1999) P2X receptor-mediated changes in cochlear potentials arising from exogenous adenosine 5′-triphosphate in endolymph. Hear Res 138:56–64

    Article  PubMed  CAS  Google Scholar 

  5. Sueta T, Paki B, Everett AW, Robertson D (2003) Purinergic receptors in auditory neurotransmission. Hear Res 183:97–108

    Article  PubMed  CAS  Google Scholar 

  6. Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131

    PubMed  CAS  Google Scholar 

  7. Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T (1990) ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol 63:1068–1074

    PubMed  CAS  Google Scholar 

  8. Dulon D, Mollard P, Aran JM (1991) Extracellular ATP elevates cytosolic Ca2+ in cochlear inner hair cells. NeuroReport 2:69–72

    Article  PubMed  CAS  Google Scholar 

  9. Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B 249:265–273

    Article  CAS  Google Scholar 

  10. Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388

    PubMed  CAS  Google Scholar 

  11. Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea. J Physiol 491:707–718

    PubMed  CAS  Google Scholar 

  12. Skellett RA, Chen C, Fallon M, Nenov AP, Bobbin RP (1997) Pharmacological evidence that endogenous ATP modulates cochlear mechanics. Hear Res 111:42–54

    Article  PubMed  CAS  Google Scholar 

  13. Brownell WE, Bader CR, Bertrand D, Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  14. Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585

    PubMed  CAS  Google Scholar 

  15. Zhao HB, Santos-Sacchi J (1999) Auditory collusion and a coupled couple of outer hair cells. Nature 399:359–362

    Article  PubMed  CAS  Google Scholar 

  16. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 102:18724–18729

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4093

    Article  PubMed  CAS  Google Scholar 

  18. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  19. Raybould NP, Housley GD (1997) Variation in expression of the outer hair cell P2X receptor conductance along the guinea-pig cochlea. J Physiol 498:717–727

    PubMed  CAS  Google Scholar 

  20. Brandle U, Zenner HP, Ruppersberg JP (1999) Gene expression of P2x7-receptors in the developing inner ear of the rat. Neurosci Lett 273:105–108

    Article  PubMed  CAS  Google Scholar 

  21. Jarlebark L, Housley GD, Raybould NP, Vlajkovic S, Thorne PR (2002) ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. NeuroReport 13:1979–1984

    Article  PubMed  Google Scholar 

  22. Jarlebark LE, Housley GD, Thorne PR (2000) Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X2 receptor subunits in adult and developing rat cochlea. J Comp Neurol 421:289–301

    Article  PubMed  CAS  Google Scholar 

  23. Szucs A, Szappanos H, Toth A, Farkas Z, Panyi G, Csernoch L, Sziklai I (2004) Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hear Res 196:2–7

    Article  PubMed  CAS  Google Scholar 

  24. Parker MS, Nkeiruka NO, Bobbin RP (2003) Localization of the P2Y4 receptor in the guinea pig organ of Corti. J Am Acad Audiol 14:286–295

    PubMed  Google Scholar 

  25. Yu N, Zhao HB (2005) Extracellular ATP mediates outer hair cell electromotility. Proceedings of the 28th Association for Research in Otolaryngology Annual Meeting, New Orleans, LA, 19–24 February. Available at http://www.aro.org

  26. Yu N, Zhu ML, Zhao HB (2006) Prestin is expressed on the whole outer hair cell basolateral surface. Brain Res 1095:51–58

    Article  PubMed  CAS  Google Scholar 

  27. Santos-Sacchi J, Zhao HB (2003) Excitation of fluorescent dyes inactivates the outer hair cell integral membrane motor protein prestin and betrays its lateral mobility. Pflugers Arch 446:617–622

    Article  PubMed  CAS  Google Scholar 

  28. Santos-Sacchi J, Kakehata S, Takahashi S (1998) Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J Physiol 510:225–235

    Article  PubMed  CAS  Google Scholar 

  29. Munoz DJ, Thorne PR, Housley GD, Billett TE (1995) Adenosine 5′-triphosphate (ATP) concentrations in the endolymph and perilymph of the guinea-pig cochlea. Hear Res 90:119–125

    Article  PubMed  CAS  Google Scholar 

  30. Ji N, Zhao HB (2005) Expressions of ATP-gated purinergic (P2) receptors in the cochlear outer hair cells. Proceedings of the 28th Association for Research in Otolaryngology Annual Meeting, New Orleans, LA, 19–24 February. Available at http://www.aro.org

  31. Bobbin RP, Salt AN (2005) ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani. Hear Res 205:35–43

    Article  PubMed  CAS  Google Scholar 

  32. Dallos P, He DZZ, Sziklai I, Metha S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226

    PubMed  CAS  Google Scholar 

  33. Frolenkov GI, Mammano F, Belyantseva IA, Coling D, Kachar B (2000) Two distinct Ca2+-dependent signaling pathways regulate the motor output of cochlear outer hair cells. J Neurosci 20:5940–5948

    PubMed  CAS  Google Scholar 

  34. Housley GD, Marcotti W, Navaratnam D, Yamoah EN (2006) Hair cells—beyond the transducer. J Membr Biol 209:89–118

    Article  PubMed  CAS  Google Scholar 

  35. Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-induced Ca2+ release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    PubMed  CAS  Google Scholar 

  36. Blanchet C, Erostegui C, Sugasawa M, Dulon D (1996) Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors. J Neurosci 16:2574–2584

    PubMed  CAS  Google Scholar 

  37. Evans MG (1996) Acetylcholine activates two currents in guinea-pig outer hair cells. J Physiol 491:563–578

    PubMed  CAS  Google Scholar 

  38. Yu N, Zhao HB (2008) Cytoskeleton mediates outer hair cell electromotility and memory function. Proceedings of the 31st Association for Research in Otolaryngology Annual Meeting, Phoenix, AZ, 16–21 February. Available at http://www.aro.org

  39. Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signaling and metabolic communications. Eur J Neurosci 21:1859–1868

    Article  PubMed  Google Scholar 

  40. Fridberger A, Flock A, Ulfendahl M, Flock B (1998) Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 95:7127–7132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIDCD DC 05989. We thank P.G. Wilson for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Zhao, HB. ATP activates P2x receptors and requires extracellular Ca++ participation to modify outer hair cell nonlinear capacitance. Pflugers Arch - Eur J Physiol 457, 453–461 (2008). https://doi.org/10.1007/s00424-008-0522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0522-5

Keywords

Navigation