Skip to main content
Log in

Hair Cells – Beyond the Transducer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2008

Overview

This review considers the “tween twixt and twain” of hair cell physiology, specifically the signaling elements and membrane conductances which underpin forward and reverse transduction at the input stage of hair cell function and neurotransmitter release at the output stage. Other sections of this review series outline the advances which have been made in understanding the molecular physiology of mechanoelectrical transduction and outer hair cell electromotility. Here we outline the contributions of a considerable array of ion channels and receptor signaling pathways that define the biophysical status of the sensory hair cells, contributing to hair cell development and subsequently defining the operational condition of the hair cells across the broad dynamic range of physiological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abbracchio M.P., Boeynaems J.-M., Barnard E.A., Boyer J.L., Kennedy C., Miras-Portugal M.T., King B.F., Gachet C., Jacobson K.A., Weisman G.A., Burnstock G. 2003. Characterisation of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol. Sci. 24:52–55

    PubMed  CAS  Google Scholar 

  • Abou-Madi L., Pontarotti P., Tramu G., Cupo A., Eybalin M. 1987. Coexistence of putative neuroactive substances in lateral olivocochlear neurons of rat and guinea pig. Hear. Res 30:135–146

    PubMed  CAS  Google Scholar 

  • Adelman J.P., Shen K.Z., Kavanaugh M.P., Warren R.A., Wu Y.N., Lagrutta A., Bond C.T., North R.A. 1992. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9:209–216

    PubMed  CAS  Google Scholar 

  • Alioua A., Tanaka Y., Wallner M., Hofmann F., Ruth P., Meera P., Toro L. 1998. The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J. Biol. Chem. 273:32950–32956

    PubMed  CAS  Google Scholar 

  • Altschuler R.A., Fex J., Parakkal M.H., Eckenstein F. 1984. Colocalization of enkephalin-like and choline acetyltransferase-like immunoreactivities in olivocochlear neurons of the guinea pig. J. Histochem. Cytochem. 32:839–843

    PubMed  CAS  Google Scholar 

  • Altschuler R.A., Hoffman D.W., Reeks K.A., Fex J. 1985. Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hear. Res. 17:249–258

    PubMed  CAS  Google Scholar 

  • Altschuler R.A., Hoffman D.W., Wenthold R.J. 1986. Neurotransmitters of the cochlea and cochlear nucleus: immunocytochemical evidence. Am J Otolaryngol 7:100–106

    PubMed  CAS  Google Scholar 

  • Altschuler R.A., Parakkal M.H., Fex J. 1983. Localization of enkephalin-like immunoreactivity in acetylcholinesterase-positive cells in the guinea-pig lateral superior olivary complex that project to the cochlea. Neuroscience 9:621–630

    PubMed  CAS  Google Scholar 

  • Altschuler R.A., Reeks K.A., Fex J., Hoffman D.W. 1988. Lateral olivocochlear neurons contain both enkephalin and dynorphin immunoreactivities: immunocytochemical co-localization studies. J. Histochem. Cytochem. 36:797–801

    PubMed  CAS  Google Scholar 

  • Anniko M. 1983. Cytodifferentiation of cochlear hair cells. Am. J. Otolaryngol. 4:375–388

    PubMed  CAS  Google Scholar 

  • Arnold T., Oestreicher E., Ehrenberger K., Felix D. 1998. GABAA receptor modulates the activity of inner hair cell afferents in guinea pig cochlea. Hear. Res. 125:147–153

    PubMed  CAS  Google Scholar 

  • Art J.J., Crawford A.C., Fettiplace R. 1986. Electrical resonance and membrane currents in turtle cochlear hair cells. Hear. Res. 22:31–36

    PubMed  CAS  Google Scholar 

  • Art J.J., Fettiplace R. 1987. Variation of membrane properties in hair cells isolated from the turtle cochlea. J. Physiol. 385:207–242

    PubMed  CAS  Google Scholar 

  • Art J.J., Wu Y.C., Fettiplace R. 1995. The calcium-activated potassium channels of turtle hair cells. J. Gen. Physiol. 105:49–72

    PubMed  CAS  Google Scholar 

  • Ashmore J.F. 1983. Frequency tuning in a frog vestibular organ. Nature 304:536–538

    PubMed  CAS  Google Scholar 

  • Ashmore J.F. 1987. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. 388:323–347

    PubMed  CAS  Google Scholar 

  • Ashmore J.F., Meech R.W. 1986. Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371

    PubMed  CAS  Google Scholar 

  • Ashmore J.F., Ohmori H. 1990. Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J. Physiol. 428:109–131

    PubMed  CAS  Google Scholar 

  • Atkinson N.S., Robertson G.A., Ganetzky B. 1991. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555

    PubMed  CAS  Google Scholar 

  • Aubert A., Norris C.H., Guth P.S. 1994. Influence of ATP and ATP agonists on the physiology of the isolated semicircular canal of the frog (Rana pipiens). Neuroscience 62:963–974

    PubMed  CAS  Google Scholar 

  • Avila G., Dirksen R.T. 2000. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J. Gen. Physiol. 115:467–480

    PubMed  CAS  Google Scholar 

  • Baldwin S.A., Mackey J.R., Cass C.E., Young J.D. 1999. Nucleoside transporters: molecular biology and implications for therapeutic development. Mol. Med. Today. 5:216–224

    PubMed  CAS  Google Scholar 

  • Bao L., Rapin A.M., Holmstrand E.C., Cox D.H. 2002. Elimination of the BK(Ca) channel’s high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120:173–189

    PubMed  CAS  Google Scholar 

  • Barnard E.A., Webb T.E., Simon J., Kunapuli S.P. 1996. The diverse series of recombinant P2Y purinoceptors. Ciba. Found Symp. 198:166–180; discussion 180–181

    PubMed  CAS  Google Scholar 

  • Beigi R., Kobatake E., Aizawa M., Dubyak G.R. 1999. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am. J. Physiol. 276:C267–C278

    PubMed  CAS  Google Scholar 

  • Beisel K.W., Nelson N.C., Delimont D.C., Fritzsch B. 2000. Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Brain. Res. Mol. Brain. Res. 82:137–149

    PubMed  CAS  Google Scholar 

  • Beisel K.W., Rocha-Sanchez S.M., Morris K.A., Nie L., Feng F., Kachar B., Yamoah E.N., Fritzsch B. 2005. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J. Neurosci. 25:9285–9293

    PubMed  CAS  Google Scholar 

  • Benson T.E., Brown M.C. 2004. Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. J. Assoc. Res. Otolaryngol. 5:111–125

    PubMed  Google Scholar 

  • Beurg M., Hafidi A., Skinner L.J., Ruel J., Nouvian R., Henaff M., Puel J.L., Aran J.M., Dulon D. 2005. Ryanodine receptors and BK channels act as a presynaptic depressor of neurotransmission in cochlear inner hair cells. Eur. J. Neurosci. 22:1109–1119

    PubMed  Google Scholar 

  • Beutner D., Moser T. 2001. The presynaptic function of mouse cochlear inner hair cells during development of hearing. J. Neurosci. 21:4593–4599

    PubMed  CAS  Google Scholar 

  • Blanchet C., Erostegui C., Sugasawa M., Dulon D. 1996. Acetylcholine-induced potassium current of guinea pig outer hair cells: Its dependence on a calcium influx through nicotinic-like receptors. J. Neurosci. 16:2574–2584

    PubMed  CAS  Google Scholar 

  • Bo X., Alavi A., Xiang Z., Oglesby I., Ford A., Burnstock G. 1999. Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10:1107–1111

    PubMed  CAS  Google Scholar 

  • Bobbin R.P. 2001. ATP-induced movement of the stalks of isolated cochlear Deiters’ cells. Neuroreport 12:2923–2926

    PubMed  CAS  Google Scholar 

  • Bobbin R.P., Salt A.N. 2005. ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani. Hear. Res. 205:35–43

    PubMed  CAS  Google Scholar 

  • Bobbin R.P., Thompson M.H. 1978. Effects of putative transmitters on afferent cochlear transmission. Ann. Otol. Rhinol. Larygnol. 87:185–190

    CAS  Google Scholar 

  • Bodin P., Burnstock G. 1996. ATP-stimulated release of ATP by human endothelial cells. J. Cardiovasc. Pharmacol. 27:872–875

    PubMed  CAS  Google Scholar 

  • Bond C.T., Maylie J., Adelman J.P. 2005. SK channels in excitability, pacemaking and synaptic integration. Curr. Opin. Neurobiol. 15:305–311

    PubMed  CAS  Google Scholar 

  • Brake A.J., Wagenbach M.J., Julius D. 1994. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    PubMed  CAS  Google Scholar 

  • Brandle U., Zenner H.P., Ruppersberg J.P. 1999. Gene expression of P2X-receptors in the developing inner ear of the rat. Neurosci. Lett. 273:105–108

    PubMed  CAS  Google Scholar 

  • Brandt A., Striessnig J., Moser T. 2003. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J. Neurosci. 23:10832–10840

    PubMed  CAS  Google Scholar 

  • Brenner R., Jegla T.J., Wickenden A., Liu Y., Aldrich R.W. 2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–6461

    PubMed  CAS  Google Scholar 

  • Brown A.M. 1988. Continuous low level sound alters cochlear mechanics: an efferent effect? Hear. Res. 34:27–38

    CAS  Google Scholar 

  • Brown M.C. 1987. Morphology of labeled afferent fibers in the guinea pig cochlea. J. Comp. Neurol. 260:591–604

    PubMed  CAS  Google Scholar 

  • Brown M.C. 1989. Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear. Res. 40:93–109

    PubMed  CAS  Google Scholar 

  • Brown M.C., Ledwith J.V., 3rd. 1990. Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear. Res. 49:105–118

    PubMed  CAS  Google Scholar 

  • Brown M.C., Nuttall A.L. 1984. Efferent control of cochlear inner hair cell responses in the guinea-pig. J. Physiol. 354:625–646

    PubMed  CAS  Google Scholar 

  • Brown M.C., Smith D.I., Nuttall A.L. 1983. The temperature dependency of neural and hair cell responses evoked by high frequencies. J. Acoust. Soc. Am. 73:1662–1670

    PubMed  CAS  Google Scholar 

  • Brownell W.E., Bader C.R., Bertrand D. de Riabupierre Y. 1985. Evoked mechanical responses of isolated outer hair cells. Science 227:194–196

    PubMed  CAS  Google Scholar 

  • Bruce L.L., Kingsley J., Nichols D.H., Fritzsch B. 1997. The development of vestibulocochlear efferents and cochlear afferents in mice. Int. J. Dev. Neurosci. 15:671–692

    PubMed  CAS  Google Scholar 

  • Bryant G.M., Barron S.E., Norris C.H., Guth P.S. 1987. Adenosine is a modulator of hair cell-afferent neurotransmission. Hear. Res. 30:231–237

    PubMed  CAS  Google Scholar 

  • Bryant J.E., Marcotti W., Kros C.J., Richardson G.P. 2003. FM1-43 enters hair cells from the onset of mechano-electrical transduction in both mouse and chick cochlea. In: Proc. Mid-winter meeting, Association for Research in Otolaryngology. pp. #422, St Petersburg Beach, Florida, USA

  • Burki C., Felix D., Ehrenberger K. 1993. Enkephalin suppresses afferent cochlear neurotransmission. ORL J. Otorhinolaryngol. Relat. Spec. 55:3–6

    PubMed  CAS  Google Scholar 

  • Burnstock G. 1996. A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605

    PubMed  CAS  Google Scholar 

  • Burnstock, G. 2003. Purinergic receptors in the nervous system. In: Current Topics in Membranes. pp. 307–368

  • Burnstock G., Campbell G., Satchell D., Smythe A. 1970. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40:668–688

    PubMed  CAS  Google Scholar 

  • Burnstock G., Cocks T., Kasakov L., Wong H.K. 1978. Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur. J. Pharmacol. 49:145–149

    PubMed  CAS  Google Scholar 

  • Burnstock G., Knight G.E. 2004. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol. 240:31–304

    PubMed  CAS  Google Scholar 

  • Butler A., Tsunoda S., McCobb D.P., Wei A., Salkoff L. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224

    PubMed  CAS  Google Scholar 

  • Chan D.K., Hudspeth A.J. 2005. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat. Neurosci. 8:149–155

    PubMed  CAS  Google Scholar 

  • Chen L., Tian L., MacDonald S.H., McClafferty H., Hammond M.S., Huibant J.M., Ruth P., Knaus H.G., Shipston M.J. 2005. Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J. Biol. Chem. 280:33599–33609

    PubMed  CAS  Google Scholar 

  • Cheung K.K., Chan W.Y., Burnstock G. 2005. Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133:937–945

    PubMed  CAS  Google Scholar 

  • Cibulsky S.M., Fei H., Levitan I.B. 2005. Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels. J. Neurophysiol. 93:1393–1405

    PubMed  CAS  Google Scholar 

  • Clarke M.R., Fitch J.E. 1975. First fossil records of cephalopod statoliths. Nature 257:380–381

    Google Scholar 

  • Costa A.M., Brown B.S. 1997. Inhibition of M-current in cultured rat superior cervical ganglia by linopirdine: mechanism of action studies. Neuropharmacology 36:1747–1753

    PubMed  CAS  Google Scholar 

  • Cox D.H., Aldrich R.W. 2000. Role of the beta1 subunit in large-conductance Ca2+-activated K+ channel gating energetics. Mechanisms of enhanced Ca2+ sensitivity. J. Gen. Physiol. 116:411–432

    PubMed  CAS  Google Scholar 

  • Crawford A.C., Fettiplace R. 1981. An electrical tuning mechanism in turtle cochlear hair cells. J. Physiol. 312:377–412

    PubMed  CAS  Google Scholar 

  • d’Aldin C., Puel J.L., Leducq R., Crambes O., Eybalin M., Pujol R. 1995. Effects of a dopaminergic agonist in the guinea pig cochlea [published erratum appears in Hear Res 1997 Jan;103(1–2):225]. Hear. Res. 90:202–211

    PubMed  CAS  Google Scholar 

  • Dallos P., He D.Z., Lin X., Sziklai I., Mehta S., Evans B.N. 1997. Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J. Neurosci. 17:2212–2226

    PubMed  CAS  Google Scholar 

  • Dilly P.N. 1976. The structure of some cephalopod statoliths. Cell Tissue Res. 175:147–163

    PubMed  CAS  Google Scholar 

  • Doi T., Ohmori H. 1993. Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear. Res. 67:179–188

    PubMed  CAS  Google Scholar 

  • Dolan D.F., Guo M.H., Nuttall A.L. 1997. Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J. Acoust. Soc. Am. 102:3587–3596

    PubMed  CAS  Google Scholar 

  • Dolan, D.F., Nuttall, A.L. 1994. Basilar membrane movement evoked by sound is altered by electrical stimulation of the crossed olivocochlear bundle. In: 17th mid-winter meeting, Association for Research in Otolaryngology. pp. 356 N1, St. Petersburg Beach, Florida

  • Dou H., Vazquez A.E., Namkung Y., Chu H., Cardell E.L., Nie L., Parson S., Shin H.S., Yamoah E.N. 2004. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J. Assoc. Res. Otolaryngol. 5:215–226

    PubMed  Google Scholar 

  • Drury A.N., Szent-Gyorgyi A. 1929. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J. Physiol. Lond. 68:213–237

    CAS  PubMed  Google Scholar 

  • Dulon D. 1995. Ca2+ signaling in Deiters cells of the guinea-pig cochlea: Active process in supporting cells? In: Å. Flock, Ottoson D., Ulfendahl M. editor, Active Hearing. Pergamon, Oxford pp. 195–207

  • Dulon, D., Lenoir, M. 1996. Cholinergic responses in developing outer hair cells of the rat cochlea. Europ. J. Neurosci. 8:1995–1952

    CAS  Google Scholar 

  • Dulon D., Moataz R., Mollard P. 1993. Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254

    PubMed  CAS  Google Scholar 

  • Dulon D., Sugasawa M., Blanchet C., Erostegui C. 1995. Direct measurements of Ca2+-activated K+ currents in inner hair cells of the guinea-pig cochlea using photolabile Ca2+ chelators. Pfluegers Arch.-Eur. J. Physiol. 430:365–373

    CAS  Google Scholar 

  • Duncan R.K., Fuchs P.A. 2003. Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla. J. Physiol. 547:357–371

    PubMed  CAS  Google Scholar 

  • Dworetzky S.I., Boissard C.G., Lum-Ragan J.T., McKay M.C., Post-Munson D.J., Trojnacki J.T., Chang C.P., Gribkoff V.K. 1996. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J. Neurosci. 16:4543–4550

    PubMed  CAS  Google Scholar 

  • Echteler S.M. 1992. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc. Natl. Acad. Sci. USA 89:6324–6327

    PubMed  CAS  Google Scholar 

  • Ehret G. 1977. Postnatal development in the acoustic system of the house mouse in the light of developing masked thresholds. J. Acoust. Soc. Am. 62:143–148

    PubMed  CAS  Google Scholar 

  • Elgoyhen A.B., Johnson D.S., Boulter J., Vetter D.E., Heinemann S. 1994. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    PubMed  CAS  Google Scholar 

  • Elgoyhen A.B., Vetter D.E., Katz E., Rothlin C.V., Heinemann S.F., Boulter J. 2001. alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA 98:3501–3506

    PubMed  CAS  Google Scholar 

  • Erostegui C., Norris C.H., Bobbin R.P. 1994. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear. Res. 74:135–147 Issn: 0378–5955

    PubMed  CAS  Google Scholar 

  • Evans M.G., Lagostena L., Darbon P., Mammano F. 2000. Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea. Cell Calcium 28:195–203

    PubMed  CAS  Google Scholar 

  • Evans R.J., Lewis C., Virginio C., Lundstrom K., Buell G., Surprenant A., North R.A. 1996. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. 497 (Pt 2):413–422

    Google Scholar 

  • Eybalin M. 1993. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev. 73:309–373

    PubMed  CAS  Google Scholar 

  • Felix D., Ehrenberger K. 1992. The efferent modulation of mammalian inner hair cell afferents. Hear. Res. 64:1–5

    PubMed  CAS  Google Scholar 

  • Fettiplace R., Fuchs P.A. 1999. Mechanisms of hair cell tuning. Annu. Rev. Physiol. 61:809–834

    PubMed  CAS  Google Scholar 

  • Fex J. 1959. Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol. 50:540–541

    PubMed  CAS  Google Scholar 

  • Ford M.S., Nie Z., Whitworth C., Rybak L.P., Ramkumar V. 1997a. Up-regulation of adenosine receptors in the cochlea by cisplatin. Hear. Res. 111:143–152

    CAS  Google Scholar 

  • Ford, M.S., Whitworth, C.A., Dunaway, G., Ramkumar, V., Rybak, L.P. 1997b. Increase in adenosine receptor number in the chinchilla cochlea by in vivo cisplatin administration. In: 20th Midwinter meeting of the Associattion for Research in Otolaryngology. pp. 106, St Petersberg Beach, Florida

  • Fredholm B.B., AP, I.J., Jacobson K.A., Klotz K.N., Linden J. 2001. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53:527–552

    PubMed  CAS  Google Scholar 

  • Fuchs P.A., Evans M.G. 1988. Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J. Comp. Physiol. [A] 164:151–163

    CAS  Google Scholar 

  • Fuchs P.A., Evans M.G. 1990. Potassium currents in hair cells isolated from the cochlea of the chick. J. Physiol. 429:529–551

    PubMed  CAS  Google Scholar 

  • Fuchs P.A., Evans M.G., Murrow B.W. 1990. Calcium currents in hair cells isolated from the cochlea of the chick. J. Physiol. 429:553–568

    PubMed  CAS  Google Scholar 

  • Fuchs P.A., Murrow B.W. 1992. Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J. Neurosci. 12:800–809

    PubMed  CAS  Google Scholar 

  • Fuchs P.A., Nagai T., Evans M.G. 1988. Electrical tuning in hair cells isolated from the chick cochlea. J. Neurosci. 8:2460–2467

    PubMed  CAS  Google Scholar 

  • Galambos R. 1956. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19:424–437

    PubMed  CAS  Google Scholar 

  • Gale J.E., Piazza V., Ciubotaru C.D., Mammano F. 2004. A mechanism for sensing noise damage in the inner ear. Curr. Biol. 14:526–529

    PubMed  CAS  Google Scholar 

  • Gioglio L., Russo G., Polimeni M., Prigioni I. 2003. Ecto-ATPase activity sites in vestibular tissues: an ultracytochemical study in frog semicircular canals. Hear. Res. 176:1–10

    PubMed  CAS  Google Scholar 

  • Glowatzki E., Fuchs P.A. 2000. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288:2366–2368

    PubMed  CAS  Google Scholar 

  • Glowatzki E., Ruppersberg J.P., Zenner H.P., Rusch A. 1997. Mechanically and ATP-induced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine. Neuropharmacol. 36:1269–1275

    CAS  Google Scholar 

  • Gómez-Casati M.E., Fuchs P.A., Elgoyhen A.B., Katz E. 2005. Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells. J. Physiol. 566:103–118

    PubMed  Google Scholar 

  • Goodenough D.A., Paul D.L. 2003. Beyond the gap: functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol. 4:285–294

    PubMed  CAS  Google Scholar 

  • Gourine A.V., Llaudet E., Dale N., Spyer K.M. 2005a. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111

    CAS  Google Scholar 

  • Gourine A.V., Llaudet E., Dale N., Spyer K.M. 2005b. Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response. J. Neurosci. 25:1211–1218

    CAS  Google Scholar 

  • Goutman J.D., Fuchs P.A., Glowatzki E. 2005. Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J. Physiol. 566:49–59

    PubMed  CAS  Google Scholar 

  • Groff J.A., Liberman M.C. 2003. Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J. Neurophysiol. 90:3178–3200

    PubMed  Google Scholar 

  • Guinan J.J., Jr., Warr W.B., Norris B.E. 1983. Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J. Comp. Neurol. 221:358–370

    PubMed  Google Scholar 

  • Gummer A.W., Mark R.F. 1994. Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). Neuroreport 5:685–688

    PubMed  CAS  Google Scholar 

  • Hackney C.M., Mahendrasingam S., Penn A., Fettiplace R. 2005. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J. Neurosci. 25:7867–7875

    PubMed  CAS  Google Scholar 

  • Hafidi A., Beurg M., Dulon D. 2005. Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neuroscience 130:475–484

    PubMed  CAS  Google Scholar 

  • Hazama A., Hayashi S., Okada Y. 1998. Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pfluegers Arch. 437:31–35

    CAS  Google Scholar 

  • He D.Z., Dallos P. 1999. Development of acetylcholine-induced responses in neonatal gerbil outer hair cells. J. Neurophysiol. 81:1162–1170

    PubMed  CAS  Google Scholar 

  • He D.Z., Evans B.N., Dallos P. 1994. First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear. Res. 78:77–90

    PubMed  CAS  Google Scholar 

  • Hegg C.C., Greenwood D., Huang W., Han P., Lucero M.T. 2003. Activation of purinergic receptor subtypes modulates odor sensitivity. J. Neurosci. 23:8291–8301

    PubMed  CAS  Google Scholar 

  • Helyer R.J., Kennedy H.J., Davies D., Holley M.C., Kros C.J. 2005. Development of outward potassium currents in inner and outer hair cells from the embryonic mouse cochlea. Audiol. Neurootol. 10:22–34

    PubMed  CAS  Google Scholar 

  • Henkart M., Landis D.M., Reese T.S. 1976. Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J. Cell Biol. 70:338–347

    PubMed  CAS  Google Scholar 

  • Hiel H., Luebke A.E., Fuchs P.A. 2000. Cloning and expression of the alpha9 nicotinic acetylcholine receptor subunit in cochlear hair cells of the chick. Brain Res. 858:215–225

    PubMed  CAS  Google Scholar 

  • Horrigan F.T., Aldrich R.W. 2002. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120:267–305

    PubMed  CAS  Google Scholar 

  • Housley G.D. 1998. Extracellular nucleotide signaling in the inner ear. Mol. Neurobiol. 16:21–48

    PubMed  CAS  Google Scholar 

  • Housley G.D. 2000. Physiological effects of extracellular nucleotides in the inner ear. Clin. Exp. Pharmacol. Physiol. 27:575–580

    PubMed  CAS  Google Scholar 

  • Housley G.D. 2001. Nucleoside and nucleotide transmission in sensory systems. In: M.P.a.W. Abbracchio M., editor, Purinergic and Pyrimidinergic Signalling I: Molecular, Nervous and Urogenitary System Function. Springer, Berlin pp. 339–369

    Google Scholar 

  • Housley G.D., Ashmore J.F. 1991. Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc. R. Soc. Lond. B. 244:161–167

    CAS  Google Scholar 

  • Housley G.D., Ashmore J.F. 1992. Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J. Physiol. 448:73–98

    PubMed  CAS  Google Scholar 

  • Housley G.D., Greenwood D., Ashmore J.F. 1992. Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc. R. Soc. Lond B 249:265–273

    CAS  Google Scholar 

  • Housley G.D., Greenwood D., Mockett B.G., Muñoz D.J.B., Thorne P.R. 1993. Differential actions of ATP-activated conductances in outer and inner hair cells isolated from the guinea-pig organ of Corti: A humoral purinergic influence on cochlear function. In: H. Duifhuis, J.W. Horst, P. van Dijk, S.M.v. Netten., editors, Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp. 116–123

  • Housley, G.D., Huang, L.-C., Barclay, M., Greenwood, D., Raybould, N.P., Yang, L., Muñoz , D.J.M., Vlajkovic, S.M., Thorne, P.R. 2004. Contribution of P2X and P2Y receptor signaling in the cochlear partition to the regulation of sound transduction. In: Proc. 4th Int. Symposium of Nucleosides and Nucleotides, -Purines 2004. pp. 39T, Chapel Hill, North Carolina, USA

  • Housley G.D., Jagger D.J., Greenwood D., Raybould N.P., Salih S.G., Jarlebark L.E., Vlajkovic S.M., Kanjhan R., Nikolic P., Munoz D.J., Thorne P.R. 2002. Purinergic regulation of sound transduction and auditory neurotransmission. Audiol. Neurootol. 7:55–61

    PubMed  CAS  Google Scholar 

  • Housley G.D., Kanjhan R., Raybould N.P., Greenwood D., Salih S.G., Jarlebark L., Burton L.D., Setz V.C., Cannell M.B., Soeller C., Christie D.L., Usami S., Matsubara A., Yoshie H., Ryan A.F., Thorne P.R. 1999. Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J. Neurosci. 19:8377–8388

    PubMed  CAS  Google Scholar 

  • Housley G.D., Luo L., Ryan A.F. 1998a. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J. Comp. Neurol. 393:403–414

    CAS  Google Scholar 

  • Housley G.D., Raybould N.P., Thorne P.R. 1998b. Fluorescence imaging of Na+ influx via P2X receptors in cochlear hair cells. Hear. Res. 119:1–13

    CAS  Google Scholar 

  • Housley G.D., Ryan A.F. 1997. Cholinergic and purinergic neurohumoral signaling in the inner ear: A molecular physiological analysis. Audiol. Neuro-Otol. 2:92–110

    Article  CAS  Google Scholar 

  • Housley G.D., Thorne P.R. 2000. Purinergic signaling: an experimental perspective. J. Auton. Nerv. Syst. 81:139–145

    PubMed  CAS  Google Scholar 

  • Huang, L.-C., Cockayne, D., Ryan, A., Housley, G.D. 2006. Developmentally Regulated Expression of the P2X3 Receptor in the Mouse Cochlea. Histochem. Cell Biol. in press

  • Huang L.C., Greenwood D., Thorne P.R., Housley G.D. 2005b. Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J. Comp Neurol. 484:133–143

    PubMed  CAS  Google Scholar 

  • Hudspeth A.J., Lewis R.S. 1988a. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J. Physiol. 400:237–274

    CAS  Google Scholar 

  • Hudspeth A.J., Lewis R.S. 1988b. A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. J. Physiol. 400:275–297

    CAS  Google Scholar 

  • Inbe H., Watanabe S., Miyawaki M., Tanabe E., Encinas J.A. 2004. Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J. Biol. Chem. 279:19790–18799

    PubMed  CAS  Google Scholar 

  • Issa N.P., Hudspeth A.J. 1994. Clustering of Ca2+ channels and Ca2+-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc. Natl. Acad. Sci. USA 91:7578–7582

    PubMed  CAS  Google Scholar 

  • Jacobson K.A., Costanzi S., Ohno M., Joshi B.V., Besada P., Xu B., Tchilibon S. 2004. Molecular recognition at purine and pyrimidine nucleotide (P2) receptors. Curr. Top. Med. Chem. 4:805–819

    PubMed  CAS  Google Scholar 

  • Järlebark L., Housley G.D., Raybould N.P., Vlajkovic S., Thorne P.R. 2002. ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. Neuroreport 13:1979–1984

    PubMed  Google Scholar 

  • Järlebark L.E., Housley G.D., Thorne P.R. 2000. Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X2 receptor subunits in adult and developing rat cochlea. J. Comp Neurol. 421:289–301

    PubMed  Google Scholar 

  • Jentsch T.J. 2000. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1:21–30

    PubMed  CAS  Google Scholar 

  • Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    PubMed  CAS  Google Scholar 

  • Jiang Y., Pico A., Cadene M., Chait B.T., MacKinnon R. 2001. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601

    PubMed  CAS  Google Scholar 

  • Jo S., Lee K.H., Song S., Jung Y.K., Park C.S. 2005. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J. Neurochem. 94:1212–1224

    PubMed  CAS  Google Scholar 

  • Johnson S.L., Marcotti W., Kros C.J. 2005. Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J. Physiol. 563:177–191

    PubMed  CAS  Google Scholar 

  • Jones E.M., Gray-Keller M., Fettiplace R. 1999. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J. Physiol. 518 (Pt 3):653–665

    PubMed  CAS  Google Scholar 

  • Jones E.M., Laus C., Fettiplace R. 1998. Identification of Ca2+-activated K+ channel splice variants and their distribution in the turtle cochlea. Proc. Biol. Sci. 265:685–692

    PubMed  CAS  Google Scholar 

  • Kakehata S., Nakagawa T., Takasaka T., Akaike N. 1993. Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J. Physiol. 463:227–244

    PubMed  CAS  Google Scholar 

  • Kanjhan R., Housley G.D., Burton L.D., Christie D.L., Kippenberger A., Thorne P.R., Luo L., Ryan A.F. 1999. Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J. Comp Neurol. 407:11–32

    PubMed  CAS  Google Scholar 

  • Kanjhan R., Raybould N.P., Jagger D.J., Greenwood D., Housley G.D. 2003. Allosteric modulation of native cochlear P2X receptors: insights from comparison with recombinant P2X2 receptors. Audiol. Neurootol. 8:115–128

    PubMed  CAS  Google Scholar 

  • Katsuragi T., Migita K. 2004. The mechanism of ATP release as an autocrine/paracrine molecule. Nippon. Yakurigaku. Zasshi. 123:382–388

    PubMed  CAS  Google Scholar 

  • Katz E., Elgoyhen A.B., Gomez-Casati M.E., Knipper M., Vetter D.E., Fuchs P.A., Glowatzki E. 2004. Developmental regulation of nicotinic synapses on cochlear inner hair cells. J. Neurosci. 24:7814–7820

    PubMed  CAS  Google Scholar 

  • Keen J.E., Khawaled R., Farrens D.L., Neelands T., Rivard A., Bond C.T., Janowsky A., Fakler B., Adelman J.P., Maylie J. 1999. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19:8830–8838

    PubMed  CAS  Google Scholar 

  • Kennedy H.J., Crawford A.C., Fettiplace R. 2005. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883

    PubMed  CAS  Google Scholar 

  • Kennedy H.J., Meech R.W. 2002. Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J. Physiol. 539:15–23

    PubMed  CAS  Google Scholar 

  • Khakh B.S. 2001. Molecular physiology of P2X receptors and ATP signaling at synapses. Nat. Rev. Neurosci. 2:165–174

    PubMed  CAS  Google Scholar 

  • Khakh B.S., Egan T.M. 2005. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics. J. Biol. Chem. 280:6118–6129

    PubMed  CAS  Google Scholar 

  • Kharkovets T., Hardelin J.P., Safieddine S., Schweizer M., El-Amraoui A., Petit C., Jentsch T.J. 2000. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc. Natl. Acad. Sci. USA 97:4333–4338

    PubMed  CAS  Google Scholar 

  • King M., Housley G.D., Raybould N.P., Greenwood D., Salih S.G. 1998. Expression of ATP-gated ion channels by Reissner’s membrane epithelial cells. Neuroreport 9:2467–2474

    PubMed  CAS  Google Scholar 

  • Kirk D.L., Yates G.K. 1998. ATP in endolymph enhances electrically-evoked oto-acoustic emissions from the guinea pig cochlea. Neurosci. Lett. 250:149–152

    PubMed  CAS  Google Scholar 

  • Kotak V.C., Sanes D.H. 1995. Synaptically evoked prolonged depolarizations in the developing auditory system. J. Neurophysiol. 74:1611–1620

    PubMed  CAS  Google Scholar 

  • Kros C.J., Crawford A.C. 1990. Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J. Physiol. 421:263–291

    PubMed  CAS  Google Scholar 

  • Kros C.J., Ruppersberg J.P., Rusch A. 1998. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284

    PubMed  CAS  Google Scholar 

  • Kubisch C., Schroeder B.C., Friedrich T., Lutjohann B., El-Amraoui A., Marlin S., Petit C., Jentsch T.J. 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    PubMed  CAS  Google Scholar 

  • Kurima K., Peters L.M., Yang Y., Riazuddin S., Ahmed Z.M., Naz S., Arnaud D., Drury S., Mo J., Makishima T., Ghosh M., Menon P.S., Deshmukh D., Oddoux C., Ostrer H., Khan S., Deininger P.L., Hampton L.L., Sullivan S.L., Battey J.F., Jr., Keats B.J., Wilcox E.R., Friedman T.B., Griffith A.J. 2002. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat. Genet. 30:277–284

    PubMed  Google Scholar 

  • Lagostena L., Mammano F. 2001. Intracellular calcium dynamics and membrane conductance changes evoked by Deiters’ cell purinoceptor activation in the organ of Corti. Cell Calcium 29:191–198

    PubMed  CAS  Google Scholar 

  • Lagrutta A., Shen K.Z., North R.A., Adelman J.P. 1994. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J. Biol. Chem 269:20347–20351

    PubMed  CAS  Google Scholar 

  • Langer P., Grunder S., Rusch A. 2003. Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J. Comp Neurol. 455:198–209

    PubMed  CAS  Google Scholar 

  • Lazarowski E.R., Boucher R.C., Harden T.K. 2003. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 64:785–795

    PubMed  CAS  Google Scholar 

  • Lee J.H., Chiba T., Marcus D.C. 2001. P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J. Neurosci. 21:9168–9174

    PubMed  CAS  Google Scholar 

  • Lenoir M., Shnerson A., Pujol R. 1980. Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat. Embryol. 160:253–262

    PubMed  CAS  Google Scholar 

  • LePrell C.G., Bledsoe S.C.J., Bobbin R.P., Puel J.L. 2001. Neurotransmission in the inner ear: Functional and molecular analyses. In: A.F. Jahn, J. Singular, Physiology of the Ear 2nd. Ed. Santos-Sacchi, San Diego editors. pp. 575–611.

  • Lesage F., Hibino H., Hudspeth A.J. 2004. Association of beta-catenin with the alpha-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proc. Natl. Acad. Sci. USA 101:671–675

    PubMed  CAS  Google Scholar 

  • Lewis R.S., Hudspeth A.J. 1983. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541

    PubMed  CAS  Google Scholar 

  • Leybaert L., Braet K., Vandamme W., Cabooter L., Martin P.E., Evans W.H. 2003. Connexin channels, connexin mimetic peptides and ATP release. Cell Commun. Adhes. 10:251–257

    PubMed  CAS  Google Scholar 

  • Liberman M.C. 1990. Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear. Res. 49:209–223

    PubMed  CAS  Google Scholar 

  • Liberman M.C., Gao J., He D.Z., Wu X., Jia S., Zuo J. 2002. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304

    PubMed  CAS  Google Scholar 

  • Lim D.J., Anniko M. 1985. Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol. Suppl. 422:1–69

    PubMed  CAS  Google Scholar 

  • Lim H.H., Park C.S. 2005. Identification and functional characterization of ankyrin-repeat family protein ANKRA as a protein interacting with BKCa channel. Mol. Biol. Cell 16:1013–1025

    PubMed  CAS  Google Scholar 

  • Ling S., Sheng J.Z., Braun J.E., Braun A.P. 2003. Syntaxin 1A co-associates with native rat brain and cloned large conductance, calcium-activated potassium channels in situ. J. Physiol. 553:65–81

    PubMed  CAS  Google Scholar 

  • Lioudyno M., Hiel H., Kong J.H., Katz E., Waldman E., Parameshwaran-Iyer S., Glowatzki E., Fuchs P.A. 2004. A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J. Neurosci. 24:11160–11164

    PubMed  CAS  Google Scholar 

  • Magleby K.L. 2003. Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121:81–96

    PubMed  CAS  Google Scholar 

  • Maison S.F., Emeson R.B., Adams J.C., Luebke A.E., Liberman M.C. 2003. Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J. Neurophysiol. 90:2941–2949

    PubMed  CAS  Google Scholar 

  • Malgrange B., Rigo J.M., Lefebvre P.P., Coucke P., Goffin F., Xhauflaire G., Belachew S., Van de Water T.R., Moonen G. 1997. Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurones in culture. Neuroreport 8:591–596

    PubMed  CAS  Google Scholar 

  • Mammano F., Ashmore J.F. 1996. Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J. Physiol. 496:639–646

    PubMed  CAS  Google Scholar 

  • Mammano F., Frolenkov G.I., Lagostena L., Belyantseva I.A., Kurc M., Dodane V., Colavita A., Kachar B. 1999. ATP-Induced Ca2+ release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J. Neurosci. 19:6918–6929

    PubMed  CAS  Google Scholar 

  • Marcotti, W., Erven, A., Johnson, S.L., Steel, K.P., Kros, C.J. 2006. Tmc1 is necessary for normal functional maturation and survival of mouse cochlear hair cells. submitted.

  • Marcotti W., Geleoc G.S., Lennan G.W., Kros C.J. 1999. Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pfluegers Arch. 439:113–122

    CAS  Google Scholar 

  • Marcotti W., Johnson S.L., Holley M.C., Kros C.J. 2003a. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J. Physiol. 548:383–400

    CAS  Google Scholar 

  • Marcotti W., Johnson S.L., Kros C.J. 2004a. Effects of intracellular stores and extracellular Ca2+ on Ca2+-activated K+ currents in mature mouse inner hair cells. J. Physiol. 557:613–633

    CAS  Google Scholar 

  • Marcotti W., Johnson S.L., Kros C.J. 2004b. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J. Physiol. 560:691–708

    CAS  Google Scholar 

  • Marcotti W., Johnson S.L., Rusch A., Kros C.J. 2003b. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J. Physiol. 552:743–761

    CAS  Google Scholar 

  • Marcotti W., Kros C.J. 1999. Developmental expression of the potassium current I K,n contributes to maturation of mouse outer hair cells. J. Physiol. 520:653–660

    PubMed  CAS  Google Scholar 

  • Marcus D.C., Sunose H., Liu J., Bennett T., Shen Z., Scofield M.A., Ryan A.F. 1998. Protein kinase C mediates P2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells. Hear. Res. 115:82–92

    PubMed  CAS  Google Scholar 

  • Martin A.R., Fuchs P.A. 1992. The dependence of calcium-activated potassium currents on membrane potential. Proc. Biol. Sci. 250:71–76

    PubMed  CAS  Google Scholar 

  • Martinez-Dunst C., Michaels R.L., Fuchs P.A. 1997. Release sites and calcium channels in hair cells of the chick’s cochlea. J. Neurosci. 17:9133–9144

    PubMed  CAS  Google Scholar 

  • McManus O.B., Helms L.M., Pallanck L., Ganetzky B., Swanson R., Leonard R.J. 1995. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650

    PubMed  CAS  Google Scholar 

  • Meera P., Wallner M., Song M., Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc. Natl. Acad. Sci. USA 94:14066–14071

    PubMed  CAS  Google Scholar 

  • Michna M., Knirsch M., Hoda J.C., Muenkner S., Langer P., Platzer J., Striessnig J., Engel J. 2003. Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J. Physiol. 553:747–758

    PubMed  CAS  Google Scholar 

  • Mockett B.G., Bo X., Housley G.D., Thorne P.R., Burnstock G. 1995. Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea. Hear. Res. 84:177–193

    PubMed  CAS  Google Scholar 

  • Moody W.J. 1998. Control of spontaneous activity during development. J. Neurobiol. 37:97–109

    PubMed  CAS  Google Scholar 

  • Moody W.J., Bosma M.M. 2005. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev. 85:883–941

    PubMed  CAS  Google Scholar 

  • Morley B.J., Simmons D.D. 2002. Developmental mRNA expression of the alpha10 nicotinic acetylcholine receptor subunit in the rat cochlea. Brain Res. Dev. Brain Res. 139:87–96

    PubMed  CAS  Google Scholar 

  • Morton-Jones, R.T., Cannell, M.B., Jeyakumar, L.H., Fleischer, S., Housley, G.D. 2006. Differential expression of ryanodine receptors in the rat cochlea. Neuroscience 137:275–286

    PubMed  CAS  Google Scholar 

  • Mostafapour S.P., Cochran S.L., Del Puerto N.M., Rubel E.W. 2000. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J. Comp Neurol. 426:561–571

    PubMed  CAS  Google Scholar 

  • Muñoz D.J., Kendrick I.S., Rassam M., Thorne P.R. 2001. Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolaryngol. 121:10–15

    PubMed  Google Scholar 

  • Muñoz D.J., Thorne P.R., Housley G.D., Billett T.E. 1995. Adenosine 5′-triphosphate (ATP) concentrations in the endolymph and perilymph of the guinea-pig cochlea. Hear. Res. 90:119–125

    PubMed  Google Scholar 

  • Murugasu E., Russell I.J. 1996. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16:325–332

    PubMed  CAS  Google Scholar 

  • Nakagawa T., Akaike N., Kimitsuki T., Komune S., Arima T. 1990. ATP-induced current in isolated outer hair cells of guinea pig cochlea. J. Neurophysiol. 63:1068–1074

    PubMed  CAS  Google Scholar 

  • Navaratnam D.S., Bell T.J., Tu T.D., Cohen E.L., Oberholtzer J.C. 1997. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19:1077–1185

    PubMed  CAS  Google Scholar 

  • Neher E., Marty A. 1982. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79:6712–6716

    PubMed  CAS  Google Scholar 

  • Nie L., Song H., Chen M.F., Chiamvimonvat N., Beisel K.W., Yamoah E.N., Vazquez A.E. 2004. Cloning and expression of a small-conductance Ca2+-activated K+ channel from the mouse cochlea: coexpression with alpha9/alpha10 acetylcholine receptors. J. Neurophysiol. 91:1536–1544

    PubMed  CAS  Google Scholar 

  • Nikolic P., Housley G.D., Thorne P.R. 2003. Expression of the P2X7 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol. Neurootol. 8:28–37

    PubMed  CAS  Google Scholar 

  • Nilles R., Jarlebark L., Zenner H.P., Heilbronn E. 1994. ATP-induced cytoplasmic [Ca2+] increases in isolated cochlear outer hair cells. Involved receptor and channel mechanisms. Hear. Res. 73:27–34

    PubMed  CAS  Google Scholar 

  • Niu X., Qian X., Magleby K.L. 2004. Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42:745–756

    PubMed  CAS  Google Scholar 

  • North R.A. 2002. Molecular Physiology of P2X Receptors. Physiol. Rev. 82:1013–1067

    PubMed  CAS  Google Scholar 

  • North R.A. 2003. P2X3 receptors and peripheral pain mechanisms. J. Physiol. 554:301–308

    PubMed  CAS  Google Scholar 

  • North R.A., Barnard E.A. 1997. Nucleotide receptors. Curr. Opin. Neurobiol. 7:346–357

    PubMed  CAS  Google Scholar 

  • O’Brien J.J., Feng W., Allen P.D., Chen S.R., Pessah I.N., Beam K.G. 2002. Ca2+ activation of RyR1 is not necessary for the initiation of skeletal-type excitation-contraction coupling. Biophys. J. 82:2428–2435

    PubMed  CAS  Google Scholar 

  • Oestreicher E., Arnold W., Ehrenberger K., Felix D. 1997. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs. Hear. Res. 107:46–52

    PubMed  CAS  Google Scholar 

  • Oliver D., Fakler B. 1999. Expression density and functional characteristics of the outer hair cell motor protein are regulated during postnatal development in rat. J. Physiol. 519:791–800

    PubMed  CAS  Google Scholar 

  • Oliver D., Klocker N., Schuck J., Baukrowitz T., Ruppersberg J.P., Fakler B. 2000. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601

    PubMed  CAS  Google Scholar 

  • Oliver D., Knipper M., Derst C., Fakler B. 2003. Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23:2141–2149

    PubMed  CAS  Google Scholar 

  • Oliver D., Plinkert P., Zenner H.P., Ruppersberg J.P. 1997. Sodium current expression during postnatal development of rat outer hair cells. Pfluegers Arch. 434:772–778

    CAS  Google Scholar 

  • Oliver, D., Taberner, A.M., Sausbier, M., Ruth, P., Fakler, B., Lieberman, C. 2005. Effects of targeted deletion of BK channels on inner hair cell electrophysiology in vitro and auditory nerve fiber response in vivo. Proc. Assoc. Res. Otolaryngol. 835

  • Ortega, A., Samaranayake, H., Santos-Sacchi, J., Navaratnam, D.S. 2005. The effect of beta subunits on the kinetic properties of the BK channel from chick hair cells. In: Proc. Mid-Winter Meeting, Association of Research in Otolarngology. pp. 835, New Orleans

  • Park H.J., Niedzielski A.S., Wenthold R.J. 1997. Expression of the nicotinic acetylcholine receptor subunit, alpha9, in the guinea pig cochlea. Hear. Res. 112:95–105

    PubMed  CAS  Google Scholar 

  • Park S.M., Liu G., Kubal A., Fury M., Cao L., Marx S.O. 2004. Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Lett. 570:143–148

    PubMed  CAS  Google Scholar 

  • Parsons T.D., Lenzi D., Almers W., Roberts W.M. 1994. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883

    PubMed  CAS  Google Scholar 

  • Patel S., Joseph S.K., Thomas A.P. 1999. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    PubMed  CAS  Google Scholar 

  • Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H., Striessnig J. 2000. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    PubMed  CAS  Google Scholar 

  • Plazas P.V., Katz E., Gomez-Casati M.E., Bouzat C., Elgoyhen A.B. 2005. Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor. J. Neurosci. 25:10905–10912

    PubMed  CAS  Google Scholar 

  • Plesner, L. 1995. Ecto-ATPases: Identities and functions. Int. Rev. Cytol. 158:141–214

    Article  PubMed  CAS  Google Scholar 

  • Pujol R. 1985. Morphology, synaptology and electrophysiology of the developing cochlea. Acta. Otolaryngol. Suppl. 421:5–9

    PubMed  CAS  Google Scholar 

  • Pujol R., Lavigne-Rebillard M., Lenoir M. 1998. Development of sensory and neural structures in teh mammalian cochlea. In: E.W. Rubel, A.N. Popper, R.R. Fay, editors, Development of the auditory system. Springer, New York pp. 146–192

    Google Scholar 

  • Puthussery T., Fletcher E.L. 2004. Synaptic localization of P2X7 receptors in the rat retina. J. Comp Neurol. 472:13–23

    PubMed  CAS  Google Scholar 

  • Pyott S.J., Glowatzki E., Trimmer J.S., Aldrich R.W. 2004. Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells. J. Neurosci. 24:9469–9474

    PubMed  CAS  Google Scholar 

  • Ramanathan K., Fuchs P.A. 2002. Modeling hair cell tuning by expression gradients of potassium channel beta subunits. Biophys. J. 82:64–75

    PubMed  CAS  Google Scholar 

  • Ramanathan K., Michael T.H., Fuchs P.A. 2000. Beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells. J. Neurosci. 20:1675–1684

    PubMed  CAS  Google Scholar 

  • Ramanathan K., Michael T.H., Jiang G.J., Hiel H., Fuchs P.A. 1999. A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217

    PubMed  CAS  Google Scholar 

  • Ramkumar V., Whitworth C.A., Pingle S.C., Hughes L.F., Rybak L.P. 2004. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear. Res. 188:47–56

    PubMed  CAS  Google Scholar 

  • Rasmussen G.L. 1942. An efferent cochlear bundle. Anat. Rec. 82:441

    Google Scholar 

  • Rasmussen G.L. 1946. The olivary peduncle and other fiber connections of the superior olivary complex. J. Comp. Neurol. 84:141–219

    Google Scholar 

  • Raybould N.P., Housley G.D. 1997. Variation in expression of the outer hair cell P2X receptor conductance along the guinea-pig cochlea. J. Physiol. 498:717–727

    PubMed  CAS  Google Scholar 

  • Raybould N.P., Jagger D.J., Housley G.D. 2001. Positional analysis of guinea pig inner hair cell membrane conductances: implications for regulation of the membrane filter. JARO- J. Assoc. Res. Otolaryngol. 2:362–376

    CAS  Google Scholar 

  • Reinhart P.H., Levitan I.B. 1995. Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J. Neurosci. 15:4572–4579

    PubMed  CAS  Google Scholar 

  • Rennie K.J., Ashmore J.F. 1993. Effects of extracellular ATP on hair cells isolated from the guinea-pig semicircular canals. Neurosci. Lett. 160:185–189

    PubMed  CAS  Google Scholar 

  • Ricci A.J., Gray-Keller M., Fettiplace R. 2000. Tonotopic variations of calcium signaling in turtle auditory hair cells. J. Physiol. 524 Pt 2:423–436

    Google Scholar 

  • Roberts W.M., Jacobs R.A., Hudspeth A.J. 1990. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10:3664–3684

    PubMed  CAS  Google Scholar 

  • Robertson D. 1985. Brainstem location of efferent neurones projecting to the guinea pig cochlea. Hear. Res. 20:79–84

    PubMed  CAS  Google Scholar 

  • Rodriguez-Contreras A., Yamoah E.N. 2001. Direct measurement of single-channel Ca2+ currents in bullfrog hair cells reveals two distinct channel subtypes. J. Physiol. 534:669–689

    PubMed  CAS  Google Scholar 

  • Rodriguez-Contreras A., Yamoah E.N. 2003. Effects of permeant ion concentrations on the gating of L-type Ca2+ channels in hair cells. Biophys. J. 84:3457–3469

    Article  PubMed  CAS  Google Scholar 

  • Romand R. 1983. Development of the cochlea. In: R. Romand, editor. Development of Auditory and Vestibular Systems. Academic Press, New York pp. 48–88

    Google Scholar 

  • Rong W., Gourine A.V., Cockayne D.A., Xiang Z., Ford A.P., Spyer K.M., Burnstock G. 2003. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J. Neurosci. 23:11315–11321

    PubMed  CAS  Google Scholar 

  • Rosenblatt K.P., Sun Z.P., Heller S., Hudspeth A.J. 1997. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 19:1061–1075

    PubMed  CAS  Google Scholar 

  • Rossi D., Sorrentino V. 2002. Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 32:307–319

    PubMed  CAS  Google Scholar 

  • Ruttiger L., Sausbier M., Zimmermann U., Winter H., Braig C., Engel J., Knirsch M., Arntz C., Langer P., Hirt B., Muller M., Kopschall I., Pfister M., Munkner S., Rohbock K., Pfaff I., Rusch A., Ruth P., Knipper M. 2004. Deletion of the Ca2+-activated potassium (BK) alpha-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc. Natl. Acad. Sci. USA 101:12922–12927

    PubMed  Google Scholar 

  • Safieddine S., Eybalin M. 1992. Triple immunofluorescence evidence for the coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea-pigs. Eur. J. Neurosci. 4:981–992

    PubMed  Google Scholar 

  • Safieddine S., Prior A.M., Eybalin M. 1997. Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur. J. Neurosci. 9:356–367

    PubMed  CAS  Google Scholar 

  • Sage C.L., Marcus D.C. 2002. Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells. J. Membrane Biol. 185:103–115

    CAS  Google Scholar 

  • Sahley T.L., Nodar R.H. 1994. Improvement in auditory function following pentazocine suggests a role for dynorphins in auditory sensitivity. Ear Hear. 15:422–431

    PubMed  CAS  Google Scholar 

  • Saito K. 1980. Fine structure of the sensory epithelium of the guinea pig organ of Corti: afferent and efferent synapses of hair cells. J. Ultrastruct. Res. 71:222–232

    PubMed  CAS  Google Scholar 

  • Samaranayake H., Saunders J.C., Greene M.I., Navaratnam D.S. 2004. Ca2+ and K+ (BK) channels in chick hair cells are clustered and colocalized with apical-basal and tonotopic gradients. J. Physiol. 560:13–20

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J., Dilger J.P. 1988. Whole cell currents and mechanical responses of isolated outer hair cells. Hear. Res. 35:143–150

    PubMed  CAS  Google Scholar 

  • Satake M., Liberman M.C. 1996. Morphological subclasses of lateral olivocochlear terminals? Ultrastructural analysis of inner spiral bundle in cat and guinea pig. J. Comp. Neurol. 371:621–632

    PubMed  CAS  Google Scholar 

  • Schnee M.E., Brown B.S. 1998. Selectivity of linopirdine (DuP 996), a neurotransmitter release enhancer, in blocking voltage-dependent and calcium-activated potassium currents in hippocampal neurons. J. Pharmacol. Exp. Ther. 286:709–717

    PubMed  CAS  Google Scholar 

  • Schopperle W.M., Holmqvist M.H., Zhou Y., Wang J., Wang Z., Griffith L.C., Keselman I., Kusinitz F., Dagan D., Levitan I.B. 1998. Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron 20:565–573

    PubMed  CAS  Google Scholar 

  • Schreiber M., Salkoff L. 1997. A novel calcium-sensing domain in the BK channel. Biophys. J. 73:1355–1363

    PubMed  CAS  Google Scholar 

  • Schubert R., Nelson M.T. 2001. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol. Sci. 22:505–512

    PubMed  CAS  Google Scholar 

  • Schumacher M.A., Rivard A.F., Bachinger H.P., Adelman J.P. 2001. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    PubMed  CAS  Google Scholar 

  • Schwiebert E.M., Zsembery A. 2003. Extracellular ATP as a signaling molecule for epithelial cells. Biochim. Biophys. Acta 1615:7–32

    PubMed  CAS  Google Scholar 

  • Shen J., Harada N., Nakazawa H., Yamashita T. 2005. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signaling in cochlear inner hair cells. Eur. J. Neurosci. 21:2912–2922

    PubMed  Google Scholar 

  • Shen K.Z., Lagrutta A., Davies N.W., Standen N.B., Adelman J.P., North R.A. 1994. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pfluegers Arch. 426:440–445

    CAS  Google Scholar 

  • Sher A.E. 1971. The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol. Suppl. 285:1–77

    PubMed  CAS  Google Scholar 

  • Shnerson A., Devigne C., Pujol R. 1981. Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Brain Res. 254:77–88

    PubMed  CAS  Google Scholar 

  • Shnerson A., Pujol R. 1981. Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Brain Res. 254:65–75

    PubMed  CAS  Google Scholar 

  • Simmons D.D. 2002. Development of the inner ear efferent system across vertebrate species. J. Neurobiol. 53:228–250

    PubMed  Google Scholar 

  • Simmons D.D., Mansdorf N.B., Kim J.H. 1996. Olivocochlear innervation of inner and outer hair cells during postnatal maturation: evidence for a waiting period. J. Comp. Neurol. 370:551–562

    PubMed  CAS  Google Scholar 

  • Simmons D.D., Morley B.J. 1998. Differential expression of the alpha 9 nicotinic acetylcholine receptor subunit in neonatal and adult cochlear hair cells. Brain Res. Mol. Brain Res. 56:287–292

    PubMed  CAS  Google Scholar 

  • Skinner L.J., Enee V., Beurg M., Jung H.H., Ryan A.F., Hafidi A., Aran J.M., Dulon D. 2003. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea. J. Neurophysiol. 90:320–332

    PubMed  CAS  Google Scholar 

  • Sobkowicz H.M. 1992. The development of innervation in the organ of Corti. In: R. Romand, editor. Development of Audtiory and Vestibular Systems 2. Elsevier, Amsterdam pp. 59–100

    Google Scholar 

  • Sobkowicz H.M., Rose J.E., Scott G.E., Slapnick S.M. 1982. Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J. Neurosci. 2:942–957

    PubMed  CAS  Google Scholar 

  • Song H., Nie L., Rodriguez-Contreras A., Sheng Z.H., Yamoah E.N. 2003. Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. J. Neurophysiol. 89:1143–1149

    PubMed  CAS  Google Scholar 

  • Spitzer N.C. 2002. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J. Physiol. Paris 96:73–80

    PubMed  CAS  Google Scholar 

  • Spoendlin, H. 1966. The organization of the cochlear receptor. In: Advances in Otorhinolaryngology. S. Karger-Basil, editor. pp 1–227, New York

  • Spyer K.M., Dale N., Gourine A.V. 2004. ATP is a key mediator of central and peripheral chemosensory transduction. Exp. Physiol. 89:53–59

    PubMed  CAS  Google Scholar 

  • Sridhar T.S., Brown M.C., Sewell W.F. 1997. Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J. Neurosci. 17:428–437

    PubMed  CAS  Google Scholar 

  • Sridhar T.S., Liberman M.C., Brown M.C., Sewell W.F. 1995. A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 15:3667–3678

    PubMed  CAS  Google Scholar 

  • Steinmetz M., van Le T., Hollah P., Gabriels G., Hohage H., Rahn K.H., Schlatter E. 2000. Influence of purinoceptor antagonism on diadenosine pentaphosphate-induced hypotension in anesthetized rats. J. Pharmacol. Exp. Ther. 294:963–968

    PubMed  CAS  Google Scholar 

  • Strobaek D., Jorgensen T.D., Christophersen P., Ahring P.K., Olesen S.P. 2000. Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br. J. Pharmacol. 129:991–999

    PubMed  CAS  Google Scholar 

  • Sugasawa M., Erostegui C., Blanchet C., Dulon D. 1996. ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea. J. Physiol. 491 (Pt 3):707–718

    PubMed  CAS  Google Scholar 

  • Sun W., Salvi R.J. 2001. Dopamine modulates sodium currents in cochlear spiral ganglion neurons. Neuroreport 12:803–807

    PubMed  CAS  Google Scholar 

  • Szucs A., Szappanos H., Toth A., Farkas Z., Panyi G., Csernoch L., Sziklai I. 2004. Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hear. Res. 196:2–7

    PubMed  CAS  Google Scholar 

  • Takasaka T., Smith C.A. 1971. The structure and innervation of the pigeon’s basilar papilla. J. Ultrastruct. Res. 35:20–65

    PubMed  CAS  Google Scholar 

  • Taylor C.W., Laude A.J. 2002. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32:321–334

    PubMed  CAS  Google Scholar 

  • Thorne P.R., Housley G.D. 1996. Purinergic Signalling in Sensory Systems. Seminars in the Neurosciences 8:233–246

    CAS  Google Scholar 

  • Thorne P.R., Munoz D.J., Housley G.D. 2004. Purinergic modulation of cochlear partition resistance and its effect on the endocochlear potential in the guinea pig. JARO - J Assoc Res Otolaryngol 5:58–65

    Google Scholar 

  • Tian L., Coghill L.S., McClafferty H., MacDonald S.H., Antoni F.A., Ruth P., Knaus H.G., Shipston M.J. 2004. Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 101:11897–11902

    PubMed  CAS  Google Scholar 

  • Tierney T.S., Russell F.A., Moore D.R. 1997. Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J. Comp. Neurol. 378:295–306

    PubMed  CAS  Google Scholar 

  • Tseng-Crank J., Foster C.D., Krause J.D., Mertz R., Godinot N., DiChiara T.J., Reinhart P.H. 1994. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13:1315–1330

    PubMed  CAS  Google Scholar 

  • Uziel A., Romand R., Marot M. 1981. Development of cochlear potentials in rats. Audiology 20:89–100

    PubMed  CAS  Google Scholar 

  • Valera S., Hussy N., Evans R.J., Adami N., North R.A., Surprenant A., Buell G. 1994. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371:516–519

    PubMed  CAS  Google Scholar 

  • Vetter D.E., Adams J.C., Mugnaini E. 1991. Chemically distinct rat olivocochlear neurons. Synapse 7:21–43

    PubMed  CAS  Google Scholar 

  • Vetter D.E., Mugnaini E. 1992. Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat. Embryol. (Berl) 185:1–16

    CAS  Google Scholar 

  • Vlajkovic S.M., Housley G.D., Munoz D.J., Robson S.C., Sevigny J., Wang C.J., Thorne P.R. 2004. Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience 126:763–773

    PubMed  CAS  Google Scholar 

  • Vlajkovic S.M., Thorne P.R., Housley G.D., Munoz D.J., Kendrick I.S. 1998. Ecto-nucleotidases terminate purinergic signaling in the cochlear endolymphatic compartment. Neuroreport 9:1559–1565

    PubMed  CAS  Google Scholar 

  • Vlajkovic S.M., Thorne P.R., Sevigny J., Robson S.C., Housley G.D. 2002. Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Hear. Res. 170:127–138

    PubMed  CAS  Google Scholar 

  • Vlaskovska M., Kasakov L., Rong W., Bodin P., Bardini M., Cockayne D.A., Ford A.P., Burnstock G. 2001. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21:5670–5677

    PubMed  CAS  Google Scholar 

  • Vreugde S., Erven A., Kros C.J., Marcotti W., Fuchs H., Kurima K., Wilcox E.R., Friedman T.B., Griffith A.J., Balling R., Hrabe De Angelis M., Avraham K.B., Steel K.P. 2002. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat. Genet. 30:257–258

    PubMed  Google Scholar 

  • Wallner M., Meera P., Toro L. 1999. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc. Natl. Acad. Sci. USA 96:4137–4142

    PubMed  CAS  Google Scholar 

  • Wang J.C., Raybould N.P., Luo L., Ryan A.F., Cannell M.B., Thorne P.R., Housley G.D. 2003. Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 14:817–823

    PubMed  CAS  Google Scholar 

  • Wangemann P. 1996. Ca2+-dependent release of ATP from the organ of Corti measured with a luciferin-luciferase bioluminescence assay. Auditory Neuroscience 2:187–192

    CAS  Google Scholar 

  • Warr W.B. 1975. Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J. Comp. Neurol. 161:159–181

    PubMed  CAS  Google Scholar 

  • Warr W.B., Boche J.B., Neely S.T. 1997. Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear. Res. 108:89–111

    PubMed  CAS  Google Scholar 

  • Warr W.B., Guinan J.J. 1979. Efferent innervation of the organ of Corti: Two separate systems. Brain Res. 173:152–155

    PubMed  CAS  Google Scholar 

  • Wheeler-Schilling T.H., Marquordt K., Kohler K., Guenther E., Jabs R. 2001. Identification of purinergic receptors in retinal ganglion cells. Brain Res. Mol. Brain Res. 92:177–180

    PubMed  CAS  Google Scholar 

  • White P.N., Thorne P.R., Housley G.D., Mockett B., Billett T.E., Burnstock G. 1995. Quinacrine staining of marginal cells in the stria vascularis of the guinea-pig cochlea: a possible source of extracellular ATP? Hear. Res. 90:97–105

    CAS  Google Scholar 

  • Whitworth C.A., Ramkumar V., Jones B., Tsukasaki N., Rybak L.P. 2004. Protection against cisplatin ototoxicity by adenosine agonists. Biochem. Pharmacol. 67:1801–1807

    PubMed  CAS  Google Scholar 

  • Widmer H.A., Rowe I.C., Shipston M.J. 2003. Conditional protein phosphorylation regulates BK channel activity in rat cerebellar Purkinje neurons. J. Physiol. 552:379–391

    PubMed  CAS  Google Scholar 

  • Wiederhold M.L., Peake W.T. 1966. Efferent inhibition of auditory-nerve responses: dependence on acoustic-stimulus parameters. J. Acoust. Soc. Am. 40:1427–1430

    PubMed  CAS  Google Scholar 

  • Wu Y.C., Art J.J., Goodman M.B., Fettiplace R. 1995. A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog. Biophys. Mol. Biol. 63:131–158

    PubMed  CAS  Google Scholar 

  • Xia X., Hirschberg B., Smolik S., Forte M., Adelman J.P. 1998a. dSLo interacting protein 1, a novel protein that interacts with large-conductance calcium-activated potassium channels. J. Neurosci. 18:2360–2369

    CAS  Google Scholar 

  • Xia X.M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998b. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    CAS  Google Scholar 

  • Xia X.M., Zeng X., Lingle C.J. 2002. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884

    PubMed  CAS  Google Scholar 

  • Yukawa H., Shen J., Harada N., Cho-Tamaoka H., Yamashita T. 2005. Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 130:485–496

    PubMed  CAS  Google Scholar 

  • Zahradnikova A., Zahradnik I., Gyorke I., Gyorke S. 1999. Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli. J. Gen. Physiol. 114:787–798

    PubMed  CAS  Google Scholar 

  • Zhang L.I., Poo M.M. 2001. Electrical activity and development of neural circuits. Nat. Neurosci. 4 Suppl:1207–1214

    PubMed  CAS  Google Scholar 

  • Zhang Y., Joiner W.J., Bhattacharjee A., Rassendren F., Magoski N.S., Kaczmarek L.K. 2004. The appearance of a protein kinase A-regulated splice isoform of slo is associated with the maturation of neurons that control reproductive behavior. J. Biol. Chem. 279:52324–52330

    PubMed  CAS  Google Scholar 

  • Zhao, H.B., Yu, N., Flemming, C.R. 2005. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc. Natl. Acad. Sci. USA. 102:18724–18729

    Google Scholar 

  • Zheng J., Shen W., He D.Z., Long K.B., Madison L.D., Dallos P. 2000. Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    PubMed  CAS  Google Scholar 

  • Zhou X.B., Arntz C., Kamm S., Motejlek K., Sausbier U., Wang G.X., Ruth P., Korth M. 2001. A molecular switch for specific stimulation of the BKCa channel by cGMP and cAMP kinase. J. Biol. Chem. 276:43239–43245

    PubMed  CAS  Google Scholar 

  • Zhu N., Eghbali M., Helguera G., Song M., Stefani E., Toro L. 2005. Alternative splicing of Slo channel gene programmed by estrogen, progesterone and pregnancy. FEBS Lett. 579:4856–4860

    PubMed  CAS  Google Scholar 

  • Zimmermann H. 2001. Ectonucleotidases: Some recent developments and a note on nomenclature. Drug Developm. Res. 52:44–56

    CAS  Google Scholar 

  • Zimmermann H., Braun N., Kegel B., Heine P. 1998. New insights into molecular structure and function of ectonucleotidases in the nervous system. Neurochem. Int. 32:421–425

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health Grants DC07592 and DC03828 (E.N.Y.), and the Royal Society of New Zealand (James Cook Fellowship, G.D.H.). W.M is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.D. Housley.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00232-008-9109-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Housley, G., Marcotti, W., Navaratnam, D. et al. Hair Cells – Beyond the Transducer. J Membrane Biol 209, 89–118 (2006). https://doi.org/10.1007/s00232-005-0835-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0835-7

Keywords

Navigation