Skip to main content
Log in

Hypoglossal nuclei participation in rat mystacial pad control

  • Peripheral Nervous System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recently, we showed that extra-trigeminal axons, originating from the hypoglossal nucleus, travel with the infraorbital division of the trigeminal nerve (ION), which is known to innervate the rat mystacial pad. Dil was monolaterally injected into the rat XII nucleus to analyse the peripheral distribution of hypoglossal axons to the mystacial pad, to evaluate their involvement in facial sensory–motor control. Electromyographic responses of mystacial pad motor units to electrical stimulation of the ION were recorded, along with the evoked responses to electrical stimulation of the ipsilateral XII nucleus. The results showed that hypoglossal axon terminals target the ipsilateral extrinsic musculature of the mystacial pad, but they do not have any contact with the intrinsic muscles. ION electrical stimulation increased electromyographic activity in the ipsilateral pad extrinsic muscles, even following VII nerve transection. Hypoglossal nucleus electrical stimulation induced field potentials and monosynaptic responses in the same motor units that persisted even following VII nerve transection, these disappearing after cooling the ION. We suggest that the small hypoglossal neurons projecting to the extrinsic musculature of the mystacial pad are part of a hypoglossal–trigeminal loop that participates in the sensory–motor control of the rat vibrissae system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aldes LD (1980) Afferent projections to the hypoglossal nuclei in the rat and cat. Anat Rec 196:7A

    Google Scholar 

  2. Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    Article  PubMed  Google Scholar 

  3. Berthoud HR, Kressel M, Neuhuber WL (1992) An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system. Anat Embryol 186:431–442

    Article  PubMed  CAS  Google Scholar 

  4. Borke R, Nau ME, Ringler RL Jr (1983) Brain stem afferents of hypoglossal neurons in the rat. Brain Res 269:47–55

    Article  PubMed  CAS  Google Scholar 

  5. Borke R, Nau ME (1987) The ultrastructural morphology and distribution of trigemino-hypoglossal connections labeled with horseradish peroxidase. Brain Res 442:235–241

    Article  Google Scholar 

  6. Bowden REM, Mahran ZY (1956) The functional significance of the pattern of innervation of the muscle quadratus labii superioris of the rabbit, cat and rat. J Anat 90:217–227

    PubMed  CAS  Google Scholar 

  7. Brancatisano A, Davis P, van der Touw T, Wheatley JR (1999) Effect of upper airway negative pressure on proprioceptive afferents from the tongue. J Appl Physiol 86:1396–1401

    PubMed  CAS  Google Scholar 

  8. Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    Article  PubMed  CAS  Google Scholar 

  9. Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    PubMed  CAS  Google Scholar 

  10. Dauvergne C, Pinganaud G, Buisseret P, Buisseret-Delmas C, Zerari-Mailly F (2001) Reticular premotor neurons projecting to both facial and hypoglossal nuclei receive trigeminal afferents in rats. Neurosci Lett 311:109–112

    Article  PubMed  CAS  Google Scholar 

  11. Dörfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135:147–154

    PubMed  Google Scholar 

  12. Dörfl J (1985) The innervation of the mystacial region of the white mouse. A topographical study. J Anat 142:173–184

    PubMed  Google Scholar 

  13. Erzurumlu RS, Killackey HP (1979) Efferent connections of the brainstem trigeminal complex with the facial nucleus of the rat. J Comp Neurol 188:75–86

    Article  PubMed  CAS  Google Scholar 

  14. Fanselow EE, Nicolelis MAL (1999) Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci 19:7603–7616

    PubMed  CAS  Google Scholar 

  15. Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissae cortex during whisking. J Neurophysiol 78:1144–1149

    PubMed  CAS  Google Scholar 

  16. Gandieva SC, Burke D (1994) Does the nervous system depend on kinaesthetic information to control natural limb movements. In: Cordo P, Harnard S (eds) Motor control. Cambridge University Press, New York, pp 12–30

    Google Scholar 

  17. Gao P, Bermejo R, Zeigler HP (2001) Vibrissa deafferentation and rodent whisking patterns: Behavioral evidence for a central pattern generator. J Neurosci 21:5374–5380

    PubMed  CAS  Google Scholar 

  18. Hammerschlag PE (1999) Facial reanimation with jump interpositional graft hypoglossal–facial anastomosis and hypoglossal facial anastomosis: evolution in management of facial paralysis. Laringoscopie 109(Suppl 90):1–23

    Article  CAS  Google Scholar 

  19. Hattox AM, Li Y, Keller A (2003) Serotonin regulates rhythmic whisking. Neuron 39:343–352

    Article  PubMed  CAS  Google Scholar 

  20. Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–276

    Article  PubMed  Google Scholar 

  21. Honig MG, Hume RI (1989) Dil and DiO: versatile fluorescent dyes for neuronal labeling and pathway tracing. Trends Nuerosci 12:333–341

    Article  CAS  Google Scholar 

  22. Klein BG, Rhoades RW (1985) Representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J Comp Neurol 232:55–69

    Article  PubMed  CAS  Google Scholar 

  23. Kleinfeld D, Berg RW, O’Connor SM (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Motor Res 16:69–88

    Article  CAS  Google Scholar 

  24. Mameli O, Melis F (1993) Olfactory modulation of hypoglossal neuron activity. Arch Ital Biol 131:201–212

    PubMed  CAS  Google Scholar 

  25. Mameli O, Melis F, De Riu PL (1994) Visual and vestibular projections to tongue motoneurons. Brain Res Bull 33:7–16

    Article  PubMed  CAS  Google Scholar 

  26. Mameli O, Melis F, Caria MA, Podda MV, Solinas A, Becciu A, De Riu PL (1995) Olfactory influence on tongue activity. Arch Ital Biol 133:273–288

    PubMed  CAS  Google Scholar 

  27. Mameli O, Pellitteri R, Russo A, Stanzani S, Caria MA, De Riu PL (2006) Role of trigeminal nerve in regrowth of hypoglossal motoneurons after hypoglossal–facial anastomosis. Acta Oto-Laryngol 126:1334–1338

    Article  Google Scholar 

  28. Mameli O, Russo A, Borke R, Melis F, Caria MA, Pellitteri R, Tavera C, Stanzani S (2003) Olfactory–hypoglossal connections. Pflügers Arch 445:705–715

    PubMed  CAS  Google Scholar 

  29. Mameli O, Tolu E (1986) Somatosensory input from forelimb nerves to the hypoglossal neuron. Exp Neurol 94:757–766

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen Q-T, Kleinfeld D (2005) Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45:447–457

    Article  PubMed  CAS  Google Scholar 

  31. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM (1997) Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18:529–537

    Article  PubMed  CAS  Google Scholar 

  32. Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268:1353–1358

    Article  PubMed  CAS  Google Scholar 

  33. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  34. Renehan WE, Munger B (1986) Degeneration and regeneration of peripheral nerve in the rat trigeminal system. I. Identification and characterization of multiple afferent innervation of the mystacial vibrissae. J Comp Neurol 246:129–145

    Article  PubMed  CAS  Google Scholar 

  35. Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding study of the innervation of vibrissae follicle sinus complexes on the mystacial pad of the rat. J Comp Neurol 385:149–184

    Article  PubMed  CAS  Google Scholar 

  36. Rice FL, Mance A, Munger B (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of the vibrissal follicle-sinus complexes. J Comp Neurol 252:154–174

    Article  PubMed  CAS  Google Scholar 

  37. Sachdev RHS, Berg RW, Chompney G, Kleinfeld D, Ebner FF (2003) Unilateral vibrissa contact: Changes in amplitude but not the timing of vibrissa movement. Somatosens Motor Res 20:162–169

    Google Scholar 

  38. Sachdev RNS, Sato T, Ebner FF (2002) Divergent movement of adjacent whiskers. J Neurophysiol 87:1440–1448

    PubMed  Google Scholar 

  39. Semba K, Egger DM (1986) The facial “motor” nerve of the rat: control of vibrissal movement and examination of motor and sensory components. J Comp Neurol 247:144–158

    Article  PubMed  CAS  Google Scholar 

  40. Tamamaki N (1997) Organization of the entorhinal projection to the rat dentate gyrus revealed by Dil anterograde labeling. Exp Brain Res 116:250–258

    Article  PubMed  CAS  Google Scholar 

  41. Travers JB (1995) Oromotor nuclei. In: Paxinos G (ed) The rat nervous system. Academic, New York, pp 239–255

    Google Scholar 

  42. Travers JB, Norgren R (1983) Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220:280–298

    Article  PubMed  CAS  Google Scholar 

  43. Waite PME, Jacquin MF (1992) Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting throughout deep or superficial nerves. J Comp Neurol 322:233–245

    Article  PubMed  CAS  Google Scholar 

  44. Waite PME, Tracey DJ (1995) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system. Academic, New York, pp 705–724

    Google Scholar 

  45. Watson CRR, Sakai S, Armstrong W (1982) Organization of the facial nucleus in the rat. Brain Behav Evol 20:19–28

    Article  PubMed  CAS  Google Scholar 

  46. Welker WI (1964) Analysis of sniffing of the albino rat. Behavior 22:223–244

    Article  Google Scholar 

  47. Wineski LE (1983) Movements of the cranial vibrissae in the Golden Hamster (Mesocricetus auratus). J Zool Lond 200:261–280

    Article  Google Scholar 

  48. Woodhams PL, Terashima T (2000) Aberrant trajectory of entorhino-dentate axons in the mutant Shaking Rat Kawasaki: a Dil-labelling study. Eur J Neurosci 12:2707–2720

    Article  PubMed  CAS  Google Scholar 

  49. Zerari-Mailly F, Pinganaud G, Dauvergne C, Buisseret P, Buisseret-Delmas CJ (2001) Trigemino-reticulo-facial and trigemino-reticulo-hypoglossal pathways in the rat. J Comp Neurol 429:80–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Messrs. G. Sanna, F. Tavera, A. Monti, G. Mulliri, and D. Zanetti of Sassari University, as well as Mr. S. Bentivegna and Dr. D. Lo Furno of Catania University for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mameli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mameli, O., Stanzani, S., Russo, A. et al. Hypoglossal nuclei participation in rat mystacial pad control. Pflugers Arch - Eur J Physiol 456, 1189–1198 (2008). https://doi.org/10.1007/s00424-008-0472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0472-y

Keywords

Navigation