Skip to main content
Log in

The G604S-hERG mutation alters the biophysical properties and exerts a dominant-negative effect on expression of hERG channels in HEK293 cells

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We have recently identified a missense mutation, G604S, in the human ether-a-go-go related gene (hERG) that results in a malignant phenotype in a full pedigree of a Chinese congenital long QT syndrome (LQTS) family. The present study characterized the pathophysiological consequences of the mutation at the cellular level. Mutant G604S-hERG channels were expressed in HEK293 cells using a lipofectamine method. hERG currents were recorded using the voltage clamp technique. The expression of hERG protein was detected by Western blotting, and the subcellular location of hERG channels in cell was analyzed by confocal microscopy. We found that the G604S mutation did not lead to any expression of detectable currents, which was consistent with Western blotting analysis that the G604S-hERG mutation only expressed a band at 135 kDa. When coexpressed with wild-type (WT)-hERG, G604S-hERG exhibited strong dominant-negative current suppression resulting in decreased current density and altered gating properties of the WT-hERG channel, as well as interference with the trafficking of WT-hERG channel protein. In addition, confocal microscopy demonstrated that G604S-hERG subunits could be inserted into the cell membrane when forming heteromultimeric channels with WT-hERG channel subunits. Our results suggest that G604S mutation causes a loss of function in hERG through a strong dominant-negative effect on WT-hERG channel function that caused by impaired trafficking of WT-hERG channels, and further accentuates this suppression by forming heteromultimeric functional channels with WT-hERG subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185

    PubMed  CAS  Google Scholar 

  2. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusie-Luna MT, Makielski JC, Ackerman MJ (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116:134–142

    Article  PubMed  Google Scholar 

  3. Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–2112

    Article  PubMed  CAS  Google Scholar 

  4. Ackerman MJ (2005) Cardiac causes of sudden unexpected death in children and their relationship to seizures and syncope: genetic testing for cardiac electropathies. Semin Pediatr Neurol 12:52–58

    Article  PubMed  Google Scholar 

  5. Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, Bottelli G, Cerrone M, Leonardi S (2005) Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 294:2975–2980

    Article  PubMed  CAS  Google Scholar 

  6. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  7. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  PubMed  CAS  Google Scholar 

  8. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  PubMed  CAS  Google Scholar 

  9. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  PubMed  CAS  Google Scholar 

  10. Thomas D, Kiehn J, Katus HA, Karle CA (2003) Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60:235–241

    Article  PubMed  CAS  Google Scholar 

  11. Tseng GN (2001) I(Kr): the hERG channel. J Mol Cell Cardiol 33:835–849

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Zhou N, Jiang W, Peng J, Wan H, Huang C, Xie Z, Huang CL, Grace AA, Ma A (2007) A missense mutation (G604S) in the S5/pore region of HERG causes long QT syndrome in a Chinese family with a high incidence of sudden unexpected death. Eur J Pediatr 166:927–933

    Article  PubMed  CAS  Google Scholar 

  13. Jongbloed RJ, Wilde AA, Geelen JL, Doevendans P, Schaap C, Van Langen I, van Tintelen JP, Cobben JM, Beaufort-Krol GC, Geraedts JP, Smeets HJ (1999) Novel KCNQ1 and HERG missense mutations in Dutch long-QT families. Human Mutat 13:301–310

    Article  CAS  Google Scholar 

  14. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373

    Article  PubMed  CAS  Google Scholar 

  15. Rajamani S, Anderson CL, Anson BD, January CT (2002) Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105:2830–2835

    Article  PubMed  CAS  Google Scholar 

  16. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  PubMed  CAS  Google Scholar 

  17. McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC (2005) The N588K-HERG K+ channel mutation in the ‘short QT syndrome’: mechanism of gain-in-function determined at 37°C. Biochem Biophys Res Commun 334:441–449

    Article  PubMed  CAS  Google Scholar 

  18. Anson BD, Ackerman MJ, Tester DJ, Will ML, Delisle BP, Anderson CL, January CT (2004) Molecular and functional characterization of common polymorphisms in HERG (KCNH2) potassium channels. Am J Physiol Heart Circ Physiol 286:H2434–H2441

    Article  PubMed  CAS  Google Scholar 

  19. Paulussen A, Raes A, Matthijs G, Snyders DJ, Cohen N, Aerssens J (2002) A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J Biol Chem 277:48610–48616

    Article  PubMed  CAS  Google Scholar 

  20. Rossenbacker T, Mubagwa K, Jongbloed RJ, Vereecke J, Devriendt K, Gewillig M, Carmeliet E, Collen D, Heidbuchel H, Carmeliet P (2005) Novel mutation in the Per-Arnt-Sim domain of KCNH2 causes a malignant form of long-QT syndrome. Circulation 111:961–968

    Article  PubMed  CAS  Google Scholar 

  21. Moss AJ, Zareba W, Kaufman ES, Gartman E, Peterson DR, Benhorin J, Towbin JA, Keating MT, Priori SG, Schwartz PJ, Vincent GM, Robinson JL, Andrews ML, Feng C, Hall WJ, Medina A, Zhang L, Wang Z (2002) Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105:794–799

    Article  PubMed  CAS  Google Scholar 

  22. Cordeiro JM, Brugada R, Wu YS, Hong K, Dumaine R (2005) Modulation of I(Kr) inactivation by mutation N588K in KCNH2: a link to arrhythmogenesis in short QT syndrome. Cardiovasc Res 67:498–509

    Article  PubMed  CAS  Google Scholar 

  23. Clarke CE, Hill AP, Zhao J, Kondo M, Subbiah RN, Campbell TJ, Vandenberg JI (2006) Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels. J Physiol 573:291–304

    Article  PubMed  CAS  Google Scholar 

  24. Dun W, Jiang M, Tseng GN (1999) Allosteric effects of mutations in the extracellular S5-P loop on the gating and ion permeation properties of the hERG potassium channel. Pflugers Arch 439:141–149

    Article  PubMed  CAS  Google Scholar 

  25. Vandenberg JI, Torres AM, Campbell TJ, Kuchel PW (2004) The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Eur Biophys J 33:89–97

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima T, Furukawa T, Tanaka T, Katayama Y, Nagai R, Nakamura Y, Hiraoka M (1998) Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation. Circ Res 83:415–422

    PubMed  CAS  Google Scholar 

  27. Gong Q, Keeney DR, Robinson JC, Zhou Z (2004) Defective assembly and trafficking of mutant HERG channels with C-terminal truncations in long QT syndrome. J Mol Cell Cardiol 37:1225–1233

    PubMed  CAS  Google Scholar 

  28. January CT, Gong Q, Zhou Z (2000) Long QT syndrome: cellular basis and arrhythmia mechanism in LQT2. J Cardiovasc Electrophysiol 11:1413–1418

    Article  PubMed  CAS  Google Scholar 

  29. Zhou Z, Gong Q, Epstein ML, January CT (1998) HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J Biol Chem 273:21061–21066

    Article  PubMed  CAS  Google Scholar 

  30. Ficker E, Dennis AT, Obejero-Paz CA, Castaldo P, Taglialatela M, Brown AM (2000) Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome. J Mol Cell Cardiol 32:2327–2337

    Article  PubMed  CAS  Google Scholar 

  31. Gong Q, Anderson CL, January CT, Zhou Z (2004) Pharmacological rescue of trafficking defective HERG channels formed by coassembly of wild-type and long QT mutant N470D subunits. Am J Physiol Heart Circ Physiol 287:H652–H658

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (NSFC, numbers 30371571 and 30672209). YMZ thanks the Wellcome Trust for support. CLH and AAG thank the Wellcome Trust, Medical Research Council, and British Heart Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, J., Zhang, Y., Huang, N. et al. The G604S-hERG mutation alters the biophysical properties and exerts a dominant-negative effect on expression of hERG channels in HEK293 cells. Pflugers Arch - Eur J Physiol 456, 917–928 (2008). https://doi.org/10.1007/s00424-008-0454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0454-0

Keywords

Navigation