Skip to main content
Log in

A yeast-based phenotypic screen for aquaporin inhibitors

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Aquaporins mediate transport of water or small, uncharged solutes across cellular membranes according to the prevailing osmotic and chemical gradients. Because of their implication in human diseases and pathophysiological states, aquaporins are considered as potential drug targets. Yet, specific aquaporin inhibitors for in vivo studies are not available. Common functional aquaporin assays that monitor biophysical parameters related to volume changes, such as light scattering or fluorescence quenching, are time consuming and require costly equipment. Hence, they are not well geared for screening large numbers of compounds. In this paper, we describe a less demanding phenotypic yeast-based assay on 96-well microplates. The assay uses a methylamine-sensitive yeast strain in which a methylamine-permeable test aquaporin is expressed to rescue proliferation on selection plates. Specific inhibition of the aquaporin directly correlates to reduced cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nature Rev 5:687–698

    Article  CAS  Google Scholar 

  2. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  3. Nielsen S, Kwon TH, Frøkiær J, Agre P (2007) Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 261:53–64

    Article  PubMed  CAS  Google Scholar 

  4. Macey RI (1984) Transport of water and urea in red blood cells. Am J Physiol 246:C195–C203

    PubMed  Google Scholar 

  5. Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    PubMed  CAS  Google Scholar 

  6. Savage DF, Stroud RM (2007) Structural basis of aquaporin inhibition by mercury. J Mol Biol 368:607–617

    Article  PubMed  CAS  Google Scholar 

  7. Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  PubMed  CAS  Google Scholar 

  8. Pettersson N, Hagström J, Bill RM, Hohmann S (2006) Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae. Curr Genet 50:247–255

    Article  PubMed  CAS  Google Scholar 

  9. MacKinnon R, Yellen G (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250:276–279

    Article  PubMed  CAS  Google Scholar 

  10. Brooks HL, Regan JW, Yool AJ (2000) Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Mol Pharmacol 57:1021–1026

    PubMed  CAS  Google Scholar 

  11. Detmers FJ, de Groot BL, Müller EM, Hinton A, Konings IB, Sze M, Flitsch SL, Grubmüller H, Deen PM (2006) Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action. J Biol Chem 281:14207–14214

    Article  PubMed  CAS  Google Scholar 

  12. Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  PubMed  CAS  Google Scholar 

  13. Zeuthen T, Wu B, Pavlovic-Djuranovic S, Holm LM, Uzcategui NL, Duszenko M, Kun JF, Schultz JE, Beitz E (2006) Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol 61:1598–1608

    Article  PubMed  CAS  Google Scholar 

  14. Robin A, Brown F, Bahamontes-Rosa N, Wu B, Beitz E, Kun JF, Flitsch SL (2007) Microwave-assisted ring opening of epoxides: a general route to the synthesis of 1-aminopropan-2-ols with anti malaria parasite activities. J Med Chem 50:4243–4249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (Be2253/2-2) and the European Commission (LSHP-CT-2004-012189). Aélig Robin, Rose Haddoub and Sabine Flitsch kindly provided the test compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Beitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Altmann, K., Barzel, I. et al. A yeast-based phenotypic screen for aquaporin inhibitors. Pflugers Arch - Eur J Physiol 456, 717–720 (2008). https://doi.org/10.1007/s00424-007-0383-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0383-3

Keywords

Navigation