Skip to main content
Log in

Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In this study the yeast Saccharomyces cerevisiae, which is a genetically tractable model for analysis of osmoregulation, has been used for analysis of heterologous aquaporins. Aquaporin water channels play important roles in the control of water homeostasis in individual cells and multicellular organisms. We have investigated the effects of functional expression of the mammalian aquaporins AQP1 and AQP5 and the aquaglyceroporins AQP3 and AQP9. Expression of aquaporins caused moderate growth inhibition under hyperosmotic stress, while expression of aquaglyceroporins mediated strong growth inhibition due to glycerol loss. Water transport was monitored in protoplasts, where the kinetics of bursting was influenced by presence of aquaporins but not aquaglyceroporins. We observed glycerol transport through aquaglyceroporins, but not aquaporins, in a yeast strain deficient in glycerol production, whose growth depends on glycerol inflow. In addition, a gene reporter assay allowed to indirectly monitor the effect of AQP9-mediated enhanced glycerol loss on osmoadaptation. Transport activity of certain aqua(glycero)porins was diminished by low pH or CuSO4, suggesting that yeast can potentially be used for screening of putative aquaporin inhibitors. We conclude that yeast is a versatile system for functional studies of aquaporins, and it can be developed to screen for compounds of potential pharmacological use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    PubMed  CAS  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  PubMed  CAS  Google Scholar 

  • Bill RM (2001) Yeast—a panacea for the structure-function analysis of membrane proteins? Curr Genet 40:157–171

    Article  PubMed  CAS  Google Scholar 

  • Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273:27565–27572

    Article  PubMed  CAS  Google Scholar 

  • Brooks HL, Regan JW, Yool AJ (2000) Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Mol Pharmacol 57:1021–1026

    PubMed  CAS  Google Scholar 

  • Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci USA 100:2945–2950

    Article  PubMed  CAS  Google Scholar 

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  PubMed  CAS  Google Scholar 

  • Coury LA, Mathai JC, Prasad GV, Brodsky JL, Agre P, Zeidel ML (1998) Reconstitution of water channel function of aquaporins 1 and 2 by expression in yeast secretory vesicles. Am J Physiol 274:F34–F42

    PubMed  CAS  Google Scholar 

  • Daniels MJ, Wood MR, Yeager M (2006) In vivo functional assay of a recombinant aquaporin in Pichia pastoris. Appl Environ Microbiol 72:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Andre L, Ansell R, Blomberg A, Adler L (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17:95–107

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Saito M, Matsuoka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol 45:496–500

    Article  PubMed  CAS  Google Scholar 

  • Hohmann I, Bill RM, Kayingo I, Prior BA (2000) Microbial MIP channels. Trends Microbiol 8:33–38

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Nielsen S, Agre P (eds) (2001) Aquaporins. Academic

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  PubMed  CAS  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Karlgren S, Pettersson N et al (2005) Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J Biol Chem 280:7186–7193

    Article  PubMed  CAS  Google Scholar 

  • King LS, Yasui M, Agre P (2000) Aquaporins in health and disease. Mol Med Today 6:60–65

    Article  PubMed  CAS  Google Scholar 

  • Kiser GL, Gentzsch M, Kloser AK, Balzi E, Wolf DH, Goffeau A, Riordan JR (2001) Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae. Arch Biochem Biophys 390:195–205

    Article  PubMed  CAS  Google Scholar 

  • Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama H, Shimomura I et al (2002) Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51:2915–2921

    Article  PubMed  CAS  Google Scholar 

  • Ladds G, Goddard A, Davey J (2005) Functional analysis of heterologous GPCR signalling pathways in yeast. Trends Biotechnol 23:367–373

    Article  PubMed  CAS  Google Scholar 

  • Laize V, Rousselet G et al (1995) Functional expression of the human CHIP28 water channel in a yeast secretory mutant. FEBS Lett 373:269–274

    Article  PubMed  CAS  Google Scholar 

  • Laize V, Tacnet F, Ripoche P, Hohmann S (2000) Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16:897–903

    Article  PubMed  CAS  Google Scholar 

  • Larsson K, Ansell R, Eriksson P, Adler L (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Li H, Black PN, DiRusso CC (2005) A live-cell high-throughput screening assay for identification of fatty acid uptake inhibitors. Anal Biochem 336:11–19

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  PubMed  CAS  Google Scholar 

  • Matejckova-Forejtova A, Kinclova O, Sychrova H (1999) Degradation of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEMS Microbiol Lett 176:257–262

    Article  PubMed  CAS  Google Scholar 

  • Morishita Y, Sakube Y, Sasaki S, Ishibashi K (2004) Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J Pharmacol Sci 96:276–279

    Article  PubMed  CAS  Google Scholar 

  • Nejsum LN, Kwon TH et al (2002) Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci USA 99:511–516

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  PubMed  CAS  Google Scholar 

  • Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    Article  PubMed  CAS  Google Scholar 

  • Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912

    Article  PubMed  CAS  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  • Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8:404–407

    PubMed  CAS  Google Scholar 

  • Suga S, Maeshima M (2004) Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant Cell Physiol 45:823–830

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  • Tamas MJ, Karlgren S et al (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337–6345

    Article  PubMed  CAS  Google Scholar 

  • Tamas MJ, Luyten K et al (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    Article  PubMed  CAS  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  • Wieczorke R, Dlugai S, Krampe S, Boles E (2003) Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem 13:123–134

    Article  PubMed  CAS  Google Scholar 

  • Zelenina M, Bondar AA, Zelenin S, Aperia A (2003) Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J Biol Chem 278:30037–30043

    Article  PubMed  CAS  Google Scholar 

  • Zelenina M, Tritto S, Bondar AA, Zelenin S, Aperia A (2004) Copper inhibits the water and glycerol permeability of aquaporin-3. J Biol Chem 279:51939–51943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the group for helpful discussions and for critical reading of the manuscript. This work was supported by grants from the European Commission (contracts BIO4-CT98-0024 and FMRX-CT96-0128 to SH and contract LSHG-CT-2004-504601 to RMB) and the Swedish Research Council (research position and research grant to SH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hohmann.

Additional information

Communicated by L. Tomaska

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, N., Hagström, J., Bill, R.M. et al. Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae . Curr Genet 50, 247–255 (2006). https://doi.org/10.1007/s00294-006-0092-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0092-z

Keywords

Navigation