Skip to main content

Advertisement

Log in

Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin?

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Although known for more than 20 years, the molecular identity of epithelial Ca2+-activated Cl channels remains obscure. Previous candidate proteins did not hold initial promises, and thus, new hope is put into the recently identified family of bestrophin proteins, as they reflect many of the properties found for native channels. Mutations in the bestrophin gene cause an autosomal form of macular dystrophy of the retina. Bestrophin 1 is assumed to form the basolateral Ca2+-activated Cl channel in the retinal pigment epithelium of the eye. Other data suggest that bestrophin is a regulator of voltage gated Ca2+ channels. Structural information on bestrophins is available and a Cl selective filter has been localized to the second transmembrane domain of bestrophin. It is possible that bestrophins function as physiologically regulated Cl channels only in association with additional subunits and auxiliary proteins. Little is known about expression of bestrophin in gland acinar cells, which show a pronounced Ca2+-activated Cl secretion. In airways and intestinal epithelia, bestrophins could be particularly important in diseases such as cystic fibrosis and secretory diarrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ashton N, Evans RL, ElliottAC, Green R, Argent BE (1993) Regulation of fluid secretion and intracellular messengers in isolated rat pancreatic ducts by acetylcholine. J Physiol 471:549–562

    PubMed  CAS  Google Scholar 

  2. Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101–104

    Article  PubMed  CAS  Google Scholar 

  3. Barro Soria R, Spitzner M, Schreiber R, Kunzelmann K (2007) Bestrophin 1 enables Ca2+ activated Cl conductance in epithelia. J Biol Chem (in press)

  4. Chien LT, Zhang ZR, Hartzell HC (2006) Single Cl channels activated by Ca2+ in Drosophila S2 cells are mediated by bestrophins. J Gen Physiol 128:247–259

    Article  PubMed  CAS  Google Scholar 

  5. Dong Y, Zeng CQ, Ball JM, Estes MK, Morris AP (1997) The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A 94:3960–3965

    Article  PubMed  CAS  Google Scholar 

  6. Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    Article  PubMed  CAS  Google Scholar 

  7. Duta V, Szkotak AJ, Nahirney D, Duszyk M (2004) The role of bestrophin in airway epithelial ion transport. FEBS Lett 577:551–554

    Article  PubMed  CAS  Google Scholar 

  8. Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1:22–27

    Article  PubMed  CAS  Google Scholar 

  9. Fischmeister R, Hartzell HC (2005) Volume sensitivity of the bestrophin family of chloride channels. J Physiol 562:477–491

    Article  PubMed  CAS  Google Scholar 

  10. Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl channels-homing in on an elusive channel species. Prog Neurobiol 60:247–289

    Article  PubMed  CAS  Google Scholar 

  11. Fujii S, Gallemore RP, Hughes BA, Steinberg RH (1992) Direct evidence for a basolateral membrane Cl conductance in toad retinal pigment epithelium. Am J Physiol 262:C374–C383

    PubMed  CAS  Google Scholar 

  12. Gabriel SE, McDaniel J, Wasilchen T, Kreda SM, Quinney N (2006) Bestrophin-mediated Ca2+ activated Cl conductance of the airway epithelium. FASEB J 16:A256

    Google Scholar 

  13. Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV (2006) NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 119:226–238

    Article  PubMed  CAS  Google Scholar 

  14. Greenwood IA (2004) CLC-3 knockout hints at swelling-activated chloride channel complexity. J Physiol 557:343

    Article  PubMed  CAS  Google Scholar 

  15. Greenwood IA, Leblanc N (2007) Overlapping pharmacology of Ca(2+)-activated Cl(−) and K(+) channels. Trends Pharmacol Sci 28:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Greenwood IA, Miller LJ, Ohya S, Horowitz B (2002) The large conductance potassium channel beta-subunit can interact with and modulate the functional properties of a calcium-activated chloride channel, CLCA1. J Biol Chem 277:22119–22122

    Article  PubMed  CAS  Google Scholar 

  17. Hartzell HC, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  18. Hartzell HC, Qu Z, Putzier I, Artinian L, Chien LT, Cui Y (2005) Looking chloride channels straight in the eye: bestrophins, lipofuscinosis, and retinal degeneration. Physiology (Bethesda) 20:292–302

    CAS  Google Scholar 

  19. Ho MW, Kaetzel MA, Armstrong DL, Shears SB (2001) Regulation of a human chloride channel. A paradigm for integrating input from calcium, type ii calmodulin-dependent protein kinase, and inositol 3,4,5,6-tetrakisphosphate. J Biol Chem 276:18673–18680

    Article  PubMed  CAS  Google Scholar 

  20. Huang P, Gilmore E, Kultgen P, Barnes P, Milgram S, Stutts MJ (2004) Local regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium. Proc Am Thorac Soc 1:33–37

    Article  PubMed  CAS  Google Scholar 

  21. Huang P, Liu J, Di A, Robinson NC, Musch MW, Kaetzel MA, Nelson DJ (2001) Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem 276:20093–20100

    Article  PubMed  CAS  Google Scholar 

  22. HuangY, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z, Reinhold WC, Papp A, Weinstein JN, Sadee W (2004) Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 64:4294–4301

    Article  PubMed  Google Scholar 

  23. Hughes BA, Gallemore, Gallemore RP, Miller SM (1998) Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium-function and disease. Oxford University Press 1:103–134

  24. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2001) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    Google Scholar 

  25. Joo NS, Irokawa T, Robbins RC, Wine JJ (2006) Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem 281:7392–7398

    Article  PubMed  CAS  Google Scholar 

  26. Kidd JF, Thorn P (2000) Intracellular Ca2+ and Cl channel activation in secretory cells. Annu Rev Physiol 62:493–513

    Article  PubMed  CAS  Google Scholar 

  27. Kreda SM, Mall M, Mengos A, Rochelle LG, Yankaskas J, Riordan JR, Boucher RC (2005) CFTR in human airways. Molec Biol Cell 16:2154–2167

    Article  PubMed  CAS  Google Scholar 

  28. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  PubMed  CAS  Google Scholar 

  29. Kunzelmann K, König J, Markovich D, King N, Karupiah G, Cook DI (2004) Acute effects of parainfluenza virus on epithelial electrolyte transport. J Biol Chem 279:48760–48766

    Article  PubMed  CAS  Google Scholar 

  30. Kunzelmann K, Mall M (2002) Electrolyte transport in the colon: Mechanisms and implications for disease. Physiol Rev 82:245–289

    PubMed  CAS  Google Scholar 

  31. Kunzelmann K, Mall M (2003) Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Am J Respir Medicine 2:299–309

    CAS  Google Scholar 

  32. Kunzelmann K, Scheidt K, Scharf B, Ousingsawat J, Schreiber R, Wainwright BJ, McMorran B (2006) Pseudomonas flagellin inhibits Na+ transport in airway epithelia. FASEB J 20:545–546

    PubMed  CAS  Google Scholar 

  33. Kunzelmann K, Sun J, Markovich D, König J, Mürle B, Mall M, Schreiber R (2005) Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). FASEB J 19:969–970

    PubMed  CAS  Google Scholar 

  34. Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O’Driscoll K, Britton F, Perrino BA, Greenwood IA (2005) Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharm 83:541–556

    Article  CAS  Google Scholar 

  35. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284:F419–F432

    PubMed  CAS  Google Scholar 

  36. Loewen ME, Forsyth GW (2005) Structure and function of CLCA proteins. Physiol Rev 85:1061–1092

    Article  PubMed  CAS  Google Scholar 

  37. Mall M, Bleich M, Greger R, Schürlein M, Kühr J, Seydewitz HH, Brandis M, Kunzelmann K (1998) Cholinergic ion secretion in human colon requires co-activation by cAMP. Am J Physiol 275:G1274–G1281

    PubMed  CAS  Google Scholar 

  38. Mall M, Wissner A, Kühr J, Gonska T, Brandis M, Kunzelmann K (2000) Inhibition of amiloride sensitive epithelial Na+ absorption by extracellular nucleotides in human normal and CF airways. Am J Respir Cell Mol Biol 23:755–761

    PubMed  CAS  Google Scholar 

  39. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 97:12758–12763

    Article  PubMed  CAS  Google Scholar 

  40. Marmorstein LY, McLaughlin PJ, Stanton JB, Yan L, Crabb JW, Marmorstein AD (2002) Bestrophin interacts physically and functionally with protein phosphatase 2A. J Biol Chem 277(34):30591–30597

    Article  PubMed  CAS  Google Scholar 

  41. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (Best-1). J Gen Physiol 127:577–589

    Article  PubMed  CAS  Google Scholar 

  42. Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  PubMed  CAS  Google Scholar 

  43. Menteyne A, Burdakov A, Charpentier G, Petersen OH, Cancela JM (2006) Generation of specific Ca(2+) signals from Ca(2+) stores and endocytosis by differential coupling to messengers. Curr Biol 16:1931–1937

    Article  PubMed  CAS  Google Scholar 

  44. Mergler S, Strauss O (2002) Stimulation of L-type Ca(2+) channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res 74:29–40

    Article  PubMed  CAS  Google Scholar 

  45. Milenkovic VM, Rivera A, Horling F, Weber BH (2007) Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem 282:1313–1321

    Article  PubMed  CAS  Google Scholar 

  46. Mizukawa Y, Nishizawa T, Nagao T, Kitamura K, Urushidani T (2002) Cellular distribution of parchorin, a chloride intracellular channel-related protein, in various tissues. Am J Physiol Cell Physiol 282:C786–C795

    PubMed  CAS  Google Scholar 

  47. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  PubMed  CAS  Google Scholar 

  48. Petersen OH (2005) Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 38:171–200

    Article  PubMed  CAS  Google Scholar 

  49. Peterson WM, Meggyesy C, Yu K, Miller SS (1997) Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 17:2324–2337

    PubMed  CAS  Google Scholar 

  50. Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, and Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci U S A 103:12929–12934

    Article  PubMed  CAS  Google Scholar 

  51. Puntheeranurak S, Schreiber R, Kunzelmann K, Krishnamra N (2007) Control of ion transport in mouse proximal and distal colon by prolactin. Cell Physiol Biochem 19:77–88

    Article  PubMed  CAS  Google Scholar 

  52. Qu Z, Chien LT, Cui Y, Hartzell HC (2006) The anion-selective pore of the bestrophins, a family of chloride channels associated with retinal degeneration. J Neurosci 26:5411–5419

    Article  PubMed  CAS  Google Scholar 

  53. Qu Z, Fischmeister R, Hartzell HC (2004) Mouse bestrophin-2 is a bona fide Cl(−) channel: identification of a residue important in anion binding and conduction. J Gen Physiol 123:327–340

    Article  PubMed  CAS  Google Scholar 

  54. Qu Z, Hartzell HC (2004) Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel. J Gen Physiol 124:371–382

    Article  PubMed  CAS  Google Scholar 

  55. Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis Oocytes express Ca-activated Cl currents. J Biol Chem 278:49563–49572

    Article  PubMed  CAS  Google Scholar 

  56. Reigada D, Lu W, Mitchell CH (2006) Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 575:707–720

    Article  PubMed  CAS  Google Scholar 

  57. Ritzka M, Stanke F, Jansen S, Gruber AD, Pusch L, Woelfl S, Veeze HJ, Halley DJ, Tummler B (2004) The CLCA gene locus as a modulator of the gastrointestinal basic defect in cystic fibrosis. Hum Genet 115:483–491

    Article  PubMed  CAS  Google Scholar 

  58. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein AD, Strauss O (2005) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180

    PubMed  Google Scholar 

  59. Schlatter E, Greger R, Schafer JA (1990) Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl transport. Pflugers Arch 417:317–323

    Article  PubMed  CAS  Google Scholar 

  60. Schreiber R, Kunzelmann K (2005) Purinergic P2Y6 receptors induce Ca2+ and CFTR dependent Cl secretion in mouse trachea. Cell Physiol Biochem 16:99–108

    Article  PubMed  CAS  Google Scholar 

  61. Stanton JB, Goldberg AF, Hoppe G, Marmorstein LY, Marmorstein AD (2006) Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim Biophys Acta 1758:241–247

    Article  PubMed  CAS  Google Scholar 

  62. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  63. Sun H, Tsunenari T, Yau KW, Nathans J (2001) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99:4008–4013

    Article  Google Scholar 

  64. Suzuki M (2006) The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl channels. Exp Physiol 91:141–147

    Article  PubMed  CAS  Google Scholar 

  65. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredburg JJ, Boucher RC (2005) Normal and cystic fbrosis airway surface liquid homeostasis: the effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  PubMed  CAS  Google Scholar 

  66. Tarran R, Loewen ME, Paradiso AM, Olsen JC, Gray MA, Argent BE, Boucher RC, Gabriel SE (2002) Regulation of murine airway surface liquid volume by CFTR and Ca2+-activated Cl conductances. J Gen Physiol 120:407–418

    Article  PubMed  CAS  Google Scholar 

  67. Tsunenari T, Nathans J, Yau KW (2006) Ca2+-activated Cl current from human bestrophin-4 in excised membrane patches. J Gen Physiol 127:749–754

    Article  PubMed  CAS  Google Scholar 

  68. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125

    Article  PubMed  CAS  Google Scholar 

  69. Winpenny JP, Harris A, Hollingsworth MA, Argent BE, Gray MA (1998) Calcium-activated chloride conductance in a pancreatic adenocarcinoma cell line of ductal origin (HPAF) and in freshly isolated human pancreatic duct cells. Pflugers Arch 435:796–803

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto-Mizuma S, Wang GX, Liu LL, Schegg K, Hatton WJ, Duan D, Horowitz TL, Lamb FS, Hume JR (2004) Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3−/− mice. J Physiol 557:439–456

    Article  PubMed  Google Scholar 

  71. Yu K, Cui Y, Hartzell HC (2006) The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function. Invest Ophthalmol Vis Sci 47:4956–4961

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is continuously supported by the Deutsche Forschungsgemeinschaft DFG SFB699 A7 and the Else-Kröner-Fresenius-Stiftung. We acknowledge the expert technical assistances by Ms. E. Tartler and Ms. A. Paech. Bestrophins were a generous gift from Prof. Dr. J. Nathans (Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA). The C2-toxin and HEK293 cells were kindly provided by Prof. Dr. R. Benz (Biozentrum der Universität Würzburg) and Prof. Dr. R. Witzgall (University of Regensburg, Germany). The GFP-tagged hBest-1 was kindly provided by Prof. Dr. B.H.F. Weber (Institute of Human Genetics, University of Regensburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunzelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunzelmann, K., Milenkovic, V.M., Spitzner, M. et al. Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin?. Pflugers Arch - Eur J Physiol 454, 879–889 (2007). https://doi.org/10.1007/s00424-007-0245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0245-z

Keywords

Navigation