Skip to main content
Log in

Methyl-β-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The voltage-dependent Kv1.3 potassium channels mediate a variety of physiological functions in human T lymphocytes. These channels, along with their multiple regulatory components, are localized in cholesterol-enriched microdomains of plasma membrane (lipid rafts). In this study, patch-clamp technique was applied to explore the impact of the lipid-raft integrity on the Kv1.3 channel functional characteristics. T lymphoma Jurkat cells were treated for 1 h with cholesterol-binding oligosaccharide methyl-β-cyclodextrin (MβCD) in 1 or 2 mM concentration, resulting in depletion of cholesterol by 63 ± 5 or 75 ± 4%, respectively. Treatment with 2 mM MβCD did not affect the cells viability but retarded the cell proliferation. The latter treatment caused a depolarizing shift of the Kv1.3 channel activation and inactivation by 11 and 6 mV, respectively, and more than twofold decrease in the steady-state activity at depolarizing potentials. Altogether, these changes underlie the depolarization of membrane potential, recorded in a current-clamp mode. The effects of MβCD were concentration- and time-dependent and reversible. Both development and recovery of the MβCD effects were completed within 1–2 h. Therefore, cholesterol depletion causes significant alterations in the Kv1.3 channel function, whereas T cells possess a potential to reverse these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D (2004) Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ Res 94:1325–1331

    Article  PubMed  CAS  Google Scholar 

  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  3. Bock J, Szabo I, Gamper N, Adams C, Gulbins E (2003) Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305:890–897

    Article  PubMed  CAS  Google Scholar 

  4. Brainard AM, Miller AJ, Martens JR, England SK (2005) Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel–caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol 289:C49–C57

    Article  PubMed  CAS  Google Scholar 

  5. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237

    PubMed  CAS  Google Scholar 

  6. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    PubMed  CAS  Google Scholar 

  7. Cook KK, Fado DA (2002) Two adaptor proteins differentially modulate the phosphorylation and biophysics of Kv1.3 ion channel by SRC kinase. J Biol Chem 277:13268–13280

    Article  PubMed  CAS  Google Scholar 

  8. Deutsch C, Krause D, Lee SC (1986) Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol 372:405–423

    PubMed  CAS  Google Scholar 

  9. Giokondi MC, Milheit PE, Dosset P, Le Grimellec C (2004) Use of cyclodextrin for AFM monitoring of model raft formation. Biophys J 86:861–869

    Google Scholar 

  10. Gniadecki R (2004) Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320:165–169

    Article  PubMed  CAS  Google Scholar 

  11. Hajdú P, Varga Z, Pieri C, Panuy G, Gaspar R Jr (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445:674–682

    PubMed  Google Scholar 

  12. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  13. Hoessli DC, Ilandumaran S, Solterman A, Robinson PJ, Borisch B, Nasir-Ud-Din (2000) Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J 17:191–197

    Article  PubMed  CAS  Google Scholar 

  14. Kabouridis PS (2006) Lipid rafts in T cell receptor signalling. Mol Membr Biol 23:49–57

    Article  PubMed  CAS  Google Scholar 

  15. Kiss L, LoTurco J, Korn SJ (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys J 76:253–263

    PubMed  CAS  Google Scholar 

  16. Lee Sc, Levy DI, Deutsch C (1992) Diverse K+ channels in primary human T lymphocytes. J Gen Physiol 99:771–793

    Article  PubMed  CAS  Google Scholar 

  17. Levitan I, Christian AE, Tulenko TN, Rothblat GH (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115:405–416

    Article  PubMed  CAS  Google Scholar 

  18. Levy DI, Deutsch C (1996) A voltage-dependent role for K+ in recovery from C-type inactivation. Biophys J 71:3157–3166

    Article  PubMed  CAS  Google Scholar 

  19. Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM (2000) Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446

    Article  PubMed  CAS  Google Scholar 

  20. Martens JR, O’Connel K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 25:16–21

    Article  PubMed  CAS  Google Scholar 

  21. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276:8409–8414

    Article  PubMed  CAS  Google Scholar 

  22. Matteson DR, Deutsch C (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307:468–471

    Article  PubMed  CAS  Google Scholar 

  23. McCormack T, McCormack K, Nadal MS, Vieira E, Ozaita A, Rudy B (1999) The effects of Shaker beta-subunits on the human lymphocyte K+ channel Kv1.3. J Biol Chem 274:20123–20126

    Article  PubMed  CAS  Google Scholar 

  24. Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  PubMed  CAS  Google Scholar 

  25. O’Connell KM, Tamkun MM (2005) Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci 118:2155–2166

    Article  PubMed  CAS  Google Scholar 

  26. Oleson DR, deFelice LJ, Donahoe RM (1993) A comparison of K+ channel characteristics in human T cells: perforated-patch versus whole-cell recording techniques. J Membr Biol 132:229–241

    PubMed  CAS  Google Scholar 

  27. Pahapill PA, Schlichter LC (1990) Modulation of potassium channels in human T lymphocytes: effects of temperature. J Physiol 422:103–126

    PubMed  CAS  Google Scholar 

  28. Panyi G, Bagdany M, Bodnar A, Vamosi G, Sentéis G, Jenei A, Matyus L, Varga S, Waldmann TA, Gaspar R, Damjanovich S (2003) Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 100:2592–2597

    Article  PubMed  CAS  Google Scholar 

  29. Panyi G, Sheng Z, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–903

    PubMed  CAS  Google Scholar 

  30. Panyi G, Vamosi G, Basco Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S (2004) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101:1285–1290

    Article  PubMed  CAS  Google Scholar 

  31. Panyi G, Varga Z, Gaspar R (2004a) Ion channels and lymphocyte activation. Immunol Lett 92:55–66

    Article  PubMed  CAS  Google Scholar 

  32. Pizzo P, Giurizato E, Tassi M, Benedetti A, Pozzan T, Viola A (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32:3082–3091

    Article  PubMed  CAS  Google Scholar 

  33. Pouvreau S, Berthier C, Blaineau S, Amsellem J, Coronado R, Strube C (2004) Membrane cholesterol modulates dihydropyridine receptor function in mice fetal skeletal muscle cells. J Physiol 555:365–381

    Article  PubMed  CAS  Google Scholar 

  34. Romanenko V, Fang Y, Byfield F, Travis A, Vandenberg C, Rothblat G, Levitan I (2004) Cholesterol sensitivity and lipid rafts targeting of Kir2.1 channels. Biophys J 87:3850–3861

    Article  PubMed  CAS  Google Scholar 

  35. Rouquette-Jazdanian AK, Pelassy C, Breitmayer JP, Aussel C (2006) Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal 18(1):105–122

    Article  PubMed  CAS  Google Scholar 

  36. Shabala L, Ross T, Newman I, McMeekin T, Shabala S (2001) Measurements of net fluxes and extracellular changes of H+, Ca2+, K+, and NH4+ in Escherichia coli using ion-selective microelectrodes. J Microbiol Methods 46:119–129

    Article  PubMed  CAS  Google Scholar 

  37. Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation of corn roots and effects of external pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  38. Szabo I, Adams C, Gulbins E (2004) Ion channels and membrane rafts in apoptosis. Pflugers Arch 448:304–312

    Article  PubMed  CAS  Google Scholar 

  39. Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190

    Article  PubMed  CAS  Google Scholar 

  40. Xia F, Gao X, KwanE, Lam PP, Chan L, Sy K, Sep L, Wheeler MB, Gaisano HY, Tsushima RG (2004) Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279:24685–24691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance of P. Oakford (University of Tasmania). This study was supported by grant CONACyT-SEP-2004-CO1-46731 to OD. The costs of academic stay in the University of Tasmania for OD were covered by the General Direction of Academic Exchange (University of Colima).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana R. Dobrovinskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pottosin, I.I., Valencia-Cruz, G., Bonales-Alatorre, E. et al. Methyl-β-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch - Eur J Physiol 454, 235–244 (2007). https://doi.org/10.1007/s00424-007-0208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0208-4

Keywords

Navigation