Skip to main content

Advertisement

Log in

Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Small dorsal root ganglion neurons express preferentially the Na+ channel isoform NaV1.9 that mediates a tetrodotoxin-resistant (TTX-R) Na+ current. We investigated properties of the Na+ current mediated by NaV1.9 (INaN) using the whole-cell, patch-clamp recording technique. To isolate INaN from heterogeneous TTX-R Na+ currents that also contain another type of TTX-R Na+ current mediated by NaV1.8, we used NaV1.8-null mutant mice. When F was used as an internal anion in the patch pipette solution, both the activation and inactivation kinetics for INaN shifted in the hyperpolarizing direction with time. Such a time-dependent shift of the kinetics was not observed when Cl was used as an internal anion. Functional expression of INaN declined with time after cell dissociation and recovered during culture, implying that NaV1.9 may be regulated dynamically by trophic factors or depend on subtle environmental factors for its survival. During whole-cell recordings, the peak amplitude of INaN increased dramatically after a variable delay, as if inactive or silent channels had been “kindled”. Such an unusual increase of the amplitude could be prevented by adding ATP to the pipette solution or by recording with the nystatin-perforated patch-clamp technique, suggesting that the rupture of patch membrane affected the behaviour of NaV1.9. These peculiar properties of INaN may provide an insight into the plasticity of Na+ channels that are related to pathological functions of Na+ channels accompanying abnormal pain states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–C
Fig. 3A–C
Fig. 4A–C
Fig. 5A, B
Fig. 6A–C
Fig. 7A–D
Fig. 8A–C
Fig. 9

Similar content being viewed by others

References

  1. Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant sodium channel expressed by sensory neurons. Nature 379:257–262

    Article  CAS  PubMed  Google Scholar 

  2. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce H, Hill R, Stanfa LC, Dickerson, AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  CAS  PubMed  Google Scholar 

  3. Alzheimer C, Schwindt PC, Crill WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13:660–673

    CAS  PubMed  Google Scholar 

  4. Baker MD, Bostock H (1997) Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. J Neurophysiol 77:1503–1513

    CAS  PubMed  Google Scholar 

  5. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol (Lond) 548:373–382

    Google Scholar 

  6. Bennett DLH, Michael GJ, Ramachandran N, Munson JB, Averill S, Yan Q, Mcmahon SB, Priestley JV (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 18:3059–3072

    CAS  PubMed  Google Scholar 

  7. Blair NT, Bean BP (2003) Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci 23:10338–10350

    CAS  PubMed  Google Scholar 

  8. Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature 419:687–693

    Article  CAS  PubMed  Google Scholar 

  9. Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood N (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290:124–127

    Article  CAS  PubMed  Google Scholar 

  10. Breakwell NA, Behnisch T, Publicover SJ, Reymann KG (1995) Attenuation of high-voltage-activated Ca2+ current run-down in rat hippocampal CA1 pyramidal cells by NaF. Exp Brain Res 106:505–508

    CAS  PubMed  Google Scholar 

  11. Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol (Lond) 512:211–217

    Google Scholar 

  12. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Na(v)1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 97:5616–5620

    Article  CAS  PubMed  Google Scholar 

  13. Chandler SH, Hsaio CF, Inoue T, Goldberg LJ (1994) Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. J Neurophysiol 71:129–145

    CAS  PubMed  Google Scholar 

  14. Coste B, Osorio N, Padilla F, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134

    Article  CAS  PubMed  Google Scholar 

  15. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in sns-null and wild-type small primary sensory neurons. J Neurosci 19:1–6

    PubMed  Google Scholar 

  16. Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000) Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axtomized dorsal root ganglion neurons. J Neurosci 20:8754–8761

    CAS  PubMed  Google Scholar 

  17. De Miera EVS, Rudy B, Sugimori M, Llinas R (1997) Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc Natl Acad Sci USA 94:7059–7064

    Article  PubMed  Google Scholar 

  18. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 95:8963–8968

    Article  CAS  PubMed  Google Scholar 

  19. Dib-Hajj S, Black JA, Cummins TR, Waxman SG (2002) NaN/NaV1.9: a sodium channel with unique properties. Trends Neurosci 25:253–259

    Article  CAS  PubMed  Google Scholar 

  20. Dubois JM, Bergman C (1975) Late sodium current in the node of Ranvier. Pflugers Arch 357:145–148

    CAS  PubMed  Google Scholar 

  21. Elliott AA, Elliott JR (1993) Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol (Lond) 463:39–56

    Google Scholar 

  22. Fjell J, Cummins TR, Dib-Hajj SD, Freid K, Black JA, Waxman SG (1999) Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Mol Brain Res 67:267–282

    Article  CAS  PubMed  Google Scholar 

  23. Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj SD, Waxman SG, Black JA (2000) Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Mol Neurosci 11:199–202

    CAS  Google Scholar 

  24. French CR, Sah P, Buckett KJ, Gage PW (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 95:1139–1157

    Article  CAS  PubMed  Google Scholar 

  25. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93:1108–1112

    Article  CAS  PubMed  Google Scholar 

  26. Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  CAS  PubMed  Google Scholar 

  27. Großkreutz J, Quasthoff S, Kuhn M, Grafe P (1996) Capsaicin blocks tetrodotoxin-resistant sodium potentials and calcium potentials in unmyelinated C fibres of biopsied human sural nerve in vitro. Neurosci Lett 208:49–52

    Article  PubMed  Google Scholar 

  28. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    CAS  PubMed  Google Scholar 

  29. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  CAS  PubMed  Google Scholar 

  30. Kay AR, Sugimori M, Llinas R (1998) Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J Neurophysiol 80:1167–1179

    CAS  PubMed  Google Scholar 

  31. Kuryshev YA, Maumov AP, Avdonin PV, Mozhayeva GN (1993) Evidence for involvement of a GTP-binding protein in activation of Ca2+ influx by epidermal growth factor in A431 cells: effects of fluoride and bacterial toxins. Cell Signal 5:555–564

    Article  CAS  PubMed  Google Scholar 

  32. Lai J, Hunter JC, Ossipov MH, Porreca F (2000) Blockade of neuropathic pain by antisense targeting of tetrodotoxin-resistant sodium channels in sensory neurons. Methods Enzymol 314:201–203

    Article  CAS  PubMed  Google Scholar 

  33. Laird JMA, Souslava V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyperalgesia in NaV1.8 (SNS/PN3)-null mice. J Neurosci 22:8352–8356

    CAS  PubMed  Google Scholar 

  34. Ogata N, Tatebayashi H (1993) Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol (Lond) 466:9–37

    Google Scholar 

  35. Rugiero F, Mistry M, Sage D, Black JA, Waxman SG, Crest M, Clerc, N, Delmas P, Gola M (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci 23:2715–2725

    CAS  PubMed  Google Scholar 

  36. Saint DA, Ju Y-K, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol (Lond) 453:219–231

    Google Scholar 

  37. Satin J, Kyle JW, Chen M, Rogart RB, Fozzard HA (1992) The cloned cardiac Na channel alpha-subunit expressed in Xenopus oocytes show gating and blocking properties of native channels. J Membr Biol 130:11–22

    CAS  PubMed  Google Scholar 

  38. Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79:4888–4891

    CAS  PubMed  Google Scholar 

  39. Strassman AM, Raymond SA (1999) Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers. J Neurophysiol 81:413–424

    CAS  PubMed  Google Scholar 

  40. Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  41. Stys PK, Sontheimer H, Ransom BR, Waxman SG (1993) Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci USA 90:6976–6980

    CAS  PubMed  Google Scholar 

  42. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 9:967–972

    CAS  PubMed  Google Scholar 

  43. Tate S, Benn S, Hick C, Trezise D, John V, Mannion RJ, Costigan M, Plumpton C, Grose D, Gladwell Z, Kendall G, Dale K, Bountra C, Woolf CJ (1998) Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nat Neurosci 1:653–655

    Article  CAS  PubMed  Google Scholar 

  44. Vargas G, Yeh TJ, Blumenthal DK, Lucero MT (1999) Common components of patch-clamp internal recording solutions can significantly affect protein kinase A activity. Brain Res 828:169–173

    Article  CAS  PubMed  Google Scholar 

  45. Yatani A, Brown AM (1991) Mechanism of fluoride activation of G protein-gated muscarinic atrial K+ channels. J Biol Chem 266:22872–22877

    CAS  PubMed  Google Scholar 

  46. Waxman SG, Dib-Hajj SD, Cummins TR, Black JA (2000) Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in the disease states. Brain Res 886:5–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Y. Ohishi, J. Kakimura (Hiroshima University) for their excellent suggestions and technical help with this research. This study was supported in part by the Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobukuni Ogata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, H., Yamamoto, M., Matsutomi, T. et al. Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons. Pflugers Arch - Eur J Physiol 449, 76–87 (2004). https://doi.org/10.1007/s00424-004-1315-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1315-0

Keywords

Navigation