Skip to main content
Log in

Differential use-dependent inactivation of Nav1.8 in the subpopulation of cultured dorsal root ganglion

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Sodium channel Nav1.8 is expressed preferentially in members of the peripheral nervous system such as nociceptive dorsal root ganglion (DRG) neurons.

Methods

Using immunocytochemistry and eletrophysiological recording, we found that a subpopulation of small DRG neurons, grouped by isolectin B4 (IB4) immunoreactivity, showed a different use-dependent inactivation of Nav1.8 current, and this situation changed over time during in vitro culture.

Results

The IB -4 immunoreactivity of DRG neurons was not changed during in vitro culture with the exception of this small population of IB4-negative small-diameter DRG neurons. The Nav1.8 channel in IB +4 neurons underwent a level of use-dependent inactivation that was significantly stronger than that seen in IB -4 neurons at 1 and 2 days-in-vitro (DIV). The use-dependent inactivation of the Nav1.8 channel in IB +4 neurons at 1 DIV was significantly attenuated at 2 DIV. The values for voltage dependency of activation and steady-state inactivation of Nav1.8 were similar in all subpopulations of DRG neurons and did not change over time. The time constant for entry into slow inactivation of Nav1.8 in IB +4 neurons was significantly faster than in IB -4 neurons at 1 and 2 DIV, while the rate of recovery from slow inactivation of Nav1.8 in IB +4 neurons was slower than that seen in IB -4 neurons. Moreover, the time constant for entry into the slow inactivation of Nav1.8 in IB +4 neurons after 1 DIV was significantly faster than at 2 DIV, and the rate of recovery from the slow inactivation of Nav1.8 in IB +4 neurons at 1 DIV was slower than that at 2 DIV, which indicated that the strong use-dependent inactivation in IB +4 neurons at 1 DIV was the result of a greater preference for the slow inactivation state than at 2 DIV.

Conclusion

Our data suggest that the time-dependent change of the use-dependent inactivation of the Nav1.8 channel in DRG neurons cultured in vitro would contribute to the excitability of a subpopulation of DRG neurons and could play an important role in the development of inflammatory and neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. Stucky, C. L. & Lewin, G. R. Isolectin B(4)–positive and–negative nociceptors are functionally distinct. J Neurosci 19, 6497–6505 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. Choi, J. S., Dib–Hajj, S. D. & Waxman, S. G. Differential slow inactivation and use–dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4–DRG neurons. J Neurophysiol 97, 1258–1265 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Renganathan, M., Cummins, T. R. & Waxman, S. G. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86, 629–640 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Blair, N. T. & Bean, B. P. Roles of tetrodotoxin (TTX)–sensitive Na+ current, TTX–resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22, 10277–10290 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Djouhri, L. et al. The TTX–resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550, 739–752 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin–resistant voltage–gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Sangameswaran, L. et al. Structure and function of a novel voltage–gated, tetrodotoxin–resistant sodium channel specific to sensory neurons. J Biol Chem 271, 5953–5956 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Elliott, A. A. & Elliott, J. R. Characterization of TTXsensitive and TTX–resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 463, 39–56 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cummins, T. R. & Waxman, S. G. Downregulation of tetrodotoxin–resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin–sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17, 3503–3514 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Choi, J. S., Hudmon, A., Waxman, S. G. & Dib–Hajj, S. D. Calmodulin regulates current density and frequency–dependent inhibition of sodium channel Nav1.8 in DRG neurons. J Neurophysiol 96, 97–108 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Blair, N. T. & Bean, B. P. Role of tetrodotoxin–resistant Na+ current slow inactivation in adaptation of action potential firing in small–diameter dorsal root ganglion neurons. J Neurosci 23, 10338–10350 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. Rush, A. M., Brau, M. E., Elliott, A. A. & Elliott, J. R. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J Physiol 511, 771–789 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rizzo, M. A., Kocsis, J. D. & Waxman, S. G. Slow sodium conductances of dorsal root ganglion neurons: intraneuronal homogeneity and interneuronal heterogeneity. J Neurophysiol 72, 2796–2815 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Coste, B., Osorio, N., Padilla, F., Crest, M. & Delmas, P. Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26, 123–134 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Waxman, S. G. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 6(Suppl), S133–140 (1999).

    Google Scholar 

  18. Devor, M. Sodium channels and mechanisms of neuropathic pain. J Pain 7(Suppl 1), S3–S12 (2006).

    Google Scholar 

  19. Roza, C., Laird, J. M., Souslova, V., Wood, J. N. & Cervero, F. The tetrodotoxin–resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550, 921–926 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. De Col, R., Messlinger, K. & Carr, R. W. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 586, 1089–1103 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Tripathi, P. K. et al. Analysis of the variation in use–dependent inactivation of high–threshold tetrodotoxin–resistant sodium currents recorded from rat sensory neurons. Neuroscience 143, 923–938 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, J. M., Donnelly, D. F., Song, X. J. & Lamotte, R. H. Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J Neurophysiol 78, 2790–2794 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. Abdulla, F. A. & Smith, P. A. Axotomy–and autotomy–induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 85, 630–643 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Cardenas, C. A., Cardenas, C. G., de Armendi, A. J. & Scroggs, R. S. Carbamazepine interacts with a slow inactivation state of Na (V)1.8–like sodium channels. Neurosci Lett 408, 129–134 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Leffler, A., Reiprich, A., Mohapatra, D. P. & Nau, C. Use–dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)–Resistant Nav1.8 than in TTX–sensitive Na+ channels. J Pharmacol Exp Ther 320, 354–364 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Breese, N. M., George, A. C., Pauers, L. E. & Stucky, C. L. Peripheral inflammation selectively increases TRPV1 function in IB4–positive sensory neurons from adult mouse. Pain 115, 37–49 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Hucho, T. B., Dina, O. A. & Levine, J. D. Epac mediates a cAMP–to–PKC signaling in inflammatory pain: an isolectin B4 (+) neuron–specific mechanism. J Neurosci 25, 6119–6126 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Sung Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Choi, JS. Differential use-dependent inactivation of Nav1.8 in the subpopulation of cultured dorsal root ganglion. Mol. Cell. Toxicol. 14, 409–416 (2018). https://doi.org/10.1007/s13273-018-0045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0045-x

Keywords

Navigation