Skip to main content
Log in

Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

HeLa cells expressing rat connexin43 (Cx43) and/or mouse Cx45 were studied with the dual voltage-clamp technique. Different types of cell pairs were established and their gap junction properties determined, i.e. the dependence of the instantaneous and steady-state conductances (g j,inst, g j,ss) on the transjunctional voltage (V j) and the kinetics of inactivation of the gap junction current (I j). Pairs of singly transfected cells showed homogeneous behaviour at both V j polarities. Homotypic Cx43-Cx43 and Cx45-Cx45 cell pairs yielded distinct symmetrical functions g j,inst=f(V j) and g j,ss=f(V j). Heterotypic Cx43-Cx45 preparations exhibited asymmetric functions g j,inst=f(V j) and g j,ss=f(V j) suggesting that connexons Cx43 and Cx45 gate with positive and negative V j, respectively. Preparations containing a singly (Cx43 or Cx45) or doubly (Cx43/45) transfected cell showed quasi-homogeneous behaviour at one V j polarity and heterogeneous behaviour at the other polarity. The former yielded Boltzmann parameters intermediate between those of Cx43-Cx43, Cx45-Cx45 and Cx43-Cx45 preparations; the latter could not be explained by homotypic and heterotypic combinations of homomeric connexons. Each pair of doubly transfected cells (Cx43/Cx45) yielded unique functions g j,inst=f(V j) and g j,ss=f(V j). This can not be explained by combinations of homomeric connexons. We conclude that Cx43 and Cx45 form homomeric-homotypic, homomeric-heterotypic channels as well as heteromeric-homotypic and heteromeric-heterotypic channels. This has implications for the impulse propagation in specific areas of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–C
Fig. 3A–C
Fig. 4A–C
Fig. 5A–C
Fig. 6A–C
Fig. 7A–C
Fig. 8A–C
Fig. 9A, B
Fig. 10A–D

Similar content being viewed by others

References

  1. Bader P, Weingart R (2003) Conductive and kinetic properties of connexin45 hemichannels (abstract). Pflugers Arch 445:R69

    Google Scholar 

  2. Banach K, Weingart R (2000) Voltage gating of Cx43 gap junction channels involves fast and slow current transitions. Pflugers Arch 439:248–250

    Article  PubMed  Google Scholar 

  3. Barrio LC, Capel J, Jarillo JA, Castro C, Revilla A (1997) Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes. Biophys J 73:757–769

    Google Scholar 

  4. Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC (1997) Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 273:C1386–C1396

    CAS  PubMed  Google Scholar 

  5. Bruzzone R, White WT, Paul DL (1996) Connection with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 138:1–27

    Google Scholar 

  6. Chen-Izu Y, Moreno AP, Spangler RA (2001) Opposing gates model for voltage gating of gap junction channels. Am J Physiol 281:C1604–C1613

    CAS  Google Scholar 

  7. Contreras JE, Saez JC, Bukauskas FF, Bennett MVL (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  CAS  PubMed  Google Scholar 

  8. Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, Yeh HI, Severs NJ (1999) Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem 47:907–918

    CAS  PubMed  Google Scholar 

  9. Cottrell GT, Wu Y, Burt JM (2002) Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol 282:C1469–C1482

    CAS  Google Scholar 

  10. Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE (1995) Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 6:813–822

    Google Scholar 

  11. Desplantez T, Weingart R (2003) Connexins Cx43 and Cx45: diversity of channels—diversity of electrical properties. In: Proceedings of the 2003 International Gap Junction Conference, Cambridge, UK, August 23–28, p 57

  12. Elenes S, Martinez AD, Delmar M, Beyer EC, Moreno AP (2001) Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43. Biophys J 81:1406–1418

    CAS  PubMed  Google Scholar 

  13. Gros DB, Jongsma HJ (1996) Connexins in mammalian heart function. Bioessays 18:719–730

    CAS  PubMed  Google Scholar 

  14. Halliday D, Dupont E, Coppen SR, Severs NJ (2003) Development of a cell model for functional and structural analysis of connexin co-expression: achieving homogeneous and inducible expression of multiple connexins in stable transfectants. Cell Commun Adhes 10:1–7

    Article  PubMed  Google Scholar 

  15. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    CAS  PubMed  Google Scholar 

  16. He DS, Jiang JX, Taffet SM, Burt JM (1999) Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA 96:6495–6500

    Article  CAS  PubMed  Google Scholar 

  17. Kanter HL, Laing JG, Beau SL, Beyer EC, Saffitz JE (1993) Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Circ Res 72:1124–1131

    Google Scholar 

  18. Kanter HL, Laing JG, Beyer EC, Green KG, Saffitz JE (1993) Multiple connexins colocalize in canine ventricular myocyte gap junctions. Circ Res 73:344–350

    Google Scholar 

  19. Kistler J, Lin JS, Bond J, Green C, Eckert R, Merriman R, Tunstall M, Donaldson P (1999) Connexins in the lens: are they to blame in diabetic cataractogenesis? In: Gap junction-mediated intercellular signalling in health and disease (Novartis Foundation Symposium series, Vol. 219). Wiley, Chichester, pp 97–108

  20. Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Google Scholar 

  21. Lee MJ, Rhee SK (1998) Heteromeric gap junction channels in rat hepatocytes in which the expression of connexin26 is induced. Mol Cells 8:295–300

    CAS  PubMed  Google Scholar 

  22. Moreno AP, Fishman GI, Beyer EC, Spray DC (1995) Voltage dependent gating and single channels analysis of heterotypic gap junction channels formed of Cx45 and Cx43. Progr Cell Res 4:405–408

    CAS  Google Scholar 

  23. Polontchouk, LD, Valiunas V, Haefliger J-A, Eppenberger HM, Weingart R (2002) Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts. Pflugers Arch 443:676–689

    CAS  PubMed  Google Scholar 

  24. Severs NJ (1999) Cardiovascular disease. In: Gap Junction-mediated intercellular signalling in health and disease (Novartis Foundation Symposium series, Vol. 219). Wiley, Chichester, pp 188–210

  25. Steiner E, Ebihara L (1996) Functional characterization of canine connexin45. J Membr Biol 150:153–161

    Article  CAS  PubMed  Google Scholar 

  26. Trexler EB, Bennett, MVL, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA 93:5836–5841

    Article  PubMed  Google Scholar 

  27. Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  CAS  PubMed  Google Scholar 

  28. Valiunas V, Bukauskas FF, Weingart R (1997) Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circ Res 80:708–719

    Google Scholar 

  29. Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R (1999) Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol (Lond) 519:631–644

    Google Scholar 

  30. Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440:366–379

    Article  PubMed  Google Scholar 

  31. Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:E42–E49

    CAS  PubMed  Google Scholar 

  32. Valiunas V, Gemel J, Brink PR, Beyer EC (2001) Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol 281: H1675–H1689

    CAS  Google Scholar 

  33. Van Rijen HVM, Wilders R, Van Ginneken ACG, Jongsma HJ (1998) Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance. Pflugers Arch 436:141–151

    PubMed  Google Scholar 

  34. Van Veen AA, van Rijen HV, Opthof T (2001) Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res 51:217–229

    Article  PubMed  Google Scholar 

  35. Vogel R, Weingart R (1998) Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels. J Physiol (Lond) 510:177–189

    Google Scholar 

  36. Wang XG, Peracchia C (1998) Chemical gating of heteromeric and heterotypic gap junction channels. J Membr Biol 1998 162:169–176

    Article  CAS  Google Scholar 

  37. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the laboratory of K. Willecke, Institut für Genetik, Bonn, Germany, for providing some transfected cells. We are grateful to D. Lüthi for expert technical assistance. This work was supported by grants of the Bundesamt für Bildung und Wissenschaft (code 99.0368-1; code EU grant: QLG1-GT-199-00516) and the Swiss National Science Foundation (31-55297.98 and 31-67230.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weingart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desplantez, T., Halliday, D., Dupont, E. et al. Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties. Pflugers Arch - Eur J Physiol 448, 363–375 (2004). https://doi.org/10.1007/s00424-004-1250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1250-0

Keywords

Navigation