Skip to main content
Log in

The role of two-pore-domain background K+ (K2P) channels in the thalamus

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K2P channel family, namely tandem of P domains in a weakly inward rectifying K+ (TWIK)-related acid-sensitive K+ (TASK) and TWIK-related K+ (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLCβ plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K2P channel family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376. doi:10.1038/sj.emboj.7601116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Antal M, Acuna-Goycolea C, Pressler RT, Blitz DM, Regehr WG (2010) Cholinergic activation of M2 receptors leads to context-dependent modulation of feedforward inhibition in the visual thalamus. PLoS Biol 8:e1000348. doi:10.1371/journal.pbio.1000348

    Article  PubMed Central  PubMed  Google Scholar 

  3. Behrendt RP (2006) Dysregulation of thalamic sensory “transmission” in schizophrenia: neurochemical vulnerability to hallucinations. J Psychopharmacol 20:356–372. doi:10.1177/0269881105057696

    Article  PubMed  Google Scholar 

  4. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  CAS  PubMed  Google Scholar 

  5. Bista P, Meuth SG, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape HC, Baukrowitz T, Budde T (2012) Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflügers Arch 463:89–102

  6. Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T (2014) Differential phospholipase C-dependent modulation of TWIK-related acid-sensitive K+ (TASK) and TWIK-related K+ (TREK) channels in rat thalamocortical relay neurons. J Physiol. doi:10.1113/jphysiol.2014.276527

    Google Scholar 

  7. Boyd DF, Millar JA, Watkins CS, Mathie A (2000) The role of Ca2+ stores in the muscarinic inhibition of the K+ current IK(SO) in neonatal rat cerebellar granule cells. J Physiol 529(Pt 2):321–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth P, Meuth SG, Pape HC, Budde T (2007) Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 36:132–145

    Article  CAS  PubMed  Google Scholar 

  9. Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T (2008) Correlation of T-channel coding gene expression, I(T), and the low threshold Ca(2+) spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399

    Article  CAS  PubMed  Google Scholar 

  10. Broicher T, Wettschureck N, Munsch T, Coulon P, Meuth SG, Kanyshkova T, Seidenbecher T, Offermanns S, Pape HC, Budde T (2008) Muscarinic ACh receptor-mediated control of thalamic activity via G(q)/G(11)-family G-proteins. Pflügers Arch 456:1049–1060

  11. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 25:9871–9882

    Article  CAS  PubMed  Google Scholar 

  13. Budde T, Pape HC (2009) Thalamic neurons and networks related to absence epilepsy. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research. Elsevier, Oxford

    Google Scholar 

  14. Bushell T, Clarke C, Mathie A, Robertson B (2002) Pharmacological characterization of a non-inactivating outward current observed in mouse cerebellar Purkinje neurones. Br J Pharmacol 135:705–712. doi:10.1038/sj.bjp.0704518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Centonze D, Marfia GA, Pisani A, Picconi B, Giacomini P, Bernardi G, Calabresi P (2001) Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Prog Neurobiol 63:687–696

    Article  CAS  PubMed  Google Scholar 

  16. Cerina M, Szkudlarek HJ, Kanyshkova T, Meuth P, Göbel K, Coulon P, Meuth SG, Pape H-C, Budde T (2014) Thalamic KCNQ channels: pivotal elements of activity mode control and sensory signal processing. Acta Physiol 210(suppl 695):66

    Google Scholar 

  17. Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F (2013) Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. J Biol Chem 288:35081–35092. doi:10.1074/jbc.M113.503318

  18. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22:5403–5411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC, Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein α-subunits. Proc Natl Acad Sci U S A 103:3422–3427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. TINS 15:396–402

    CAS  PubMed  Google Scholar 

  21. Chevallier S, Nagy F, Cabelguen JM (2006) Cholinergic control of excitability of spinal motoneurones in the salamander. J Physiol 570:525–540. doi:10.1113/jphysiol.2005.098970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Coulon P, Budde T, Pape HC (2012) The sleep relay—the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 463:53–71

    Article  CAS  PubMed  Google Scholar 

  23. Coulon P, Kanyshkova T, Broicher T, Munsch T, Wettschureck N, Seidenbecher T, Meuth SG, Offermanns S, Pape H-C, Budde T (2010) Activity modes in thalamocortical relay neurons are modulated by Gq/G11 family G-proteins—serotonergic and glutamatergic signalling. Front Cell Neurosci 4:132

    Article  PubMed Central  PubMed  Google Scholar 

  24. Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3:371–382

    Article  CAS  PubMed  Google Scholar 

  25. Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863–874

    CAS  PubMed  Google Scholar 

  26. Czirjak G, Petheo GL, Spat A, Enyedi P (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 281:C700–C708

    CAS  PubMed  Google Scholar 

  27. Dey D, Eckle VS, Vitko I, Sullivan KA, Lasiecka ZM, Winckler B, Stornetta RL, Williamson JM, Kapur J, Perez-Reyes E (2014) A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia 55:203–213. doi:10.1111/epi.12472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. DiFrancesco D (2005) Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin 21:1115–1122. doi:10.1185/030079905X50543

    Article  CAS  PubMed  Google Scholar 

  29. Du G, Chen X, Todorovic MS, Shu S, Kapur J, Bayliss DA (2011) TASK channel deletion reduces sensitivity to local anesthetic-induced seizures. Anesthesiology 115:1003–1011. doi:10.1097/ALN.0b013e3182343660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth SG (2010) Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Exp Transl Stroke Med 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ehling P, Cerina M, Meuth P, Kanyshkova T, Bista P, Coulon P, Meuth SG, Pape HC, Budde T (2013) Ca(2+)-dependent large conductance K(+) currents in thalamocortical relay neurons of different rat strains. Pflügers Arch 465:469–480

  32. Ehling P, Kanyshkova T, Baumann A, Landgraf P, Meuth SG, Pape HC, Budde T (2012) Adenylyl cyclases: expression in the developing rat thalamus and their role in absence epilepsy. J Mol Neurosci 48:45–52

    Article  CAS  PubMed  Google Scholar 

  33. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  34. Erdemli G, Crunelli V (1998) Response of thalamocortical neurons to hypoxia: a whole-cell patch-clamp study. J Neurosci 18:5212–5224

    CAS  PubMed  Google Scholar 

  35. Erdemli G, Crunelli V (2000) Release of monoamines and nitric oxide is involved in the modulation of hyperpolarization-activated inward current during acute thalamic hypoxia. Neuroscience 96:565–574

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez-Alacid L, Watanabe M, Molnar E, Wickman K, Lujan R (2011) Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 34:1724–1736. doi:10.1111/j.1460-9568.2011.07886.x

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, Watson A, Bria P, Tononi G (2007) Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry 164:483–492. doi:10.1176/appi.ajp.164.3.483

    Article  PubMed  Google Scholar 

  38. Ferrarelli F, Tononi G (2011) The thalamic reticular nucleus and schizophrenia. Schizophr Bull 37:306–315

    Article  PubMed Central  PubMed  Google Scholar 

  39. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  CAS  PubMed  Google Scholar 

  40. Guido W (2008) Refinement of the retinogeniculate pathway. J Physiol 586:4357–4362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463:360–371. doi:10.1002/cne.10738

    Article  CAS  PubMed  Google Scholar 

  42. Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175

    Article  CAS  PubMed  Google Scholar 

  43. Harinath S, Sikdar SK (2005) Inhibition of human TREK-1 channels by caffeine and theophylline. Epilepsy Res 64:127–135. doi:10.1016/j.eplepsyres.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  44. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309. doi:10.1016/j.neuropharm.2008.05.023

    Article  CAS  PubMed  Google Scholar 

  45. Honore E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J 21:2968–2976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Imbrici P, Camerino DC, Tricarico D (2013) Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 4:76. doi:10.3389/fgene.2013.00076

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kananura C, Sander T, Rajan S, Preisig-Muller R, Grzeschik KH, Daut J, Derst C, Steinlein OK (2002) Tandem pore domain K(+)-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am J Med Genet 114:227–229

    Article  PubMed  Google Scholar 

  48. Kang D, Han J, Kim D (2006) Mechanism of inhibition of TREK-2 (K2P10.1) by the Gq-coupled M3 muscarinic receptor. Am J Physiol Cell Physiol 291:C649–C656

    Article  CAS  PubMed  Google Scholar 

  49. Kanyshkova T, Broicher T, Meuth SG, Pape HC, Budde T (2011) A-type K+ currents in intralaminar thalamocortical relay neurons. Pflügers Arch 461:545–556

  50. Kanyshkova T, Ehling P, Cerina M, Meuth P, Zobeiri M, Meuth SG, Pape HC, Budde T (2014) Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats. Mol Cell Neurosci 61C:110–122. doi:10.1016/j.mcn.2014.06.005

    Article  Google Scholar 

  51. Kanyshkova T, Meuth P, Bista P, Liu Z, Ehling P, Caputi L, Döngi M, Chetkovich DM, Pape HC, Budde T (2012) Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains. Neurobiol Dis 45:450–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kanyshkova T, Pawlowski M, Meuth P, Dube C, Bender RA, Brewster AL, Baumann A, Baram TZ, Pape HC, Budde T (2009) Postnatal expression pattern of HCN channel isoforms in thalamic neurons: relationship to maturation of thalamocortical oscillations. J Neurosci 29:8847–8857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kim JE, Yeo SI, Ryu HJ, Chung CK, Kim MJ, Kang TC (2011) Changes in TWIK-related acid sensitive K+-1 and -3 channel expressions from neurons to glia in the hippocampus of temporal lobe epilepsy patients and experimental animal model. Neurochem Res 36:2155–2168. doi:10.1007/s11064-011-0540-0

    Article  CAS  PubMed  Google Scholar 

  54. Lindner M, Leitner MG, Halaszovich CR, Hammond GR, Oliver D (2011) Probing the regulation of TASK potassium channels by PI(4,5)P2 with switchable phosphoinositide phosphatases. J Physiol 589:3149–3162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564:117–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47:209–256

    Article  CAS  PubMed  Google Scholar 

  58. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8:e1000355

    Article  PubMed Central  PubMed  Google Scholar 

  60. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

  61. McCormick DA (1999) Thalamus: gateway to consciousness. Society for Neuroscience Meeting Miami Presidential Symposium

  62. McCormick DA, Pape H-C (1988) Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334:246–248

    Article  CAS  PubMed  Google Scholar 

  63. Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T (2006) The contribution of TASK-1-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476

    Article  CAS  PubMed  Google Scholar 

  64. Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469

    CAS  PubMed  Google Scholar 

  65. Meuth SG, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape HC, Budde T (2006) The membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529

    Article  CAS  PubMed  Google Scholar 

  66. Meuth SG, Pape H-C, Budde T (2002) Modulation of Ca2+ currents in rat thalamocortical relay neurons by activity and phosphorylation. Eur J Neurosci 15:1603–1614

    Article  PubMed  Google Scholar 

  67. Meyer TM, Munsch T, Pape HC (2000) Activity-related changes in intracellular pH in rat thalamic relay neurons. Neuroreport 11:33–37

    Article  CAS  PubMed  Google Scholar 

  68. Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, Mathie A (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci U S A 97:3614–3618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Moha Ou Maati H, Veyssiere J, Labbal F, Coppola T, Gandin C, Widmann C, Mazella J, Heurteaux C, Borsotto M (2011) Spadin as a new antidepressant: absence of TREK-1-related side effects. Neuropharmacology 62:278–288

    Article  PubMed  Google Scholar 

  70. Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100:16065–16070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Musset B, Meuth SG, Liu GX, Derst C, Wegner S, Pape HC, Budde T, Preisig-Müller R, Daut J (2006) Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572(3):639–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ortiz FC, Varas R (2010) Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells. Brain Res 1323:74–83

    Article  CAS  PubMed  Google Scholar 

  73. Pape H-C, Munsch T, Budde T (2004) Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch 448:131–138

    Article  CAS  PubMed  Google Scholar 

  74. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  75. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  76. Pian P, Bucchi A, Decostanzo A, Robinson RB, Siegelbaum SA (2007) Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C. Pflügers Arch 455:125–145. doi:10.1007/s00424-007-0295-2

  77. Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Erhlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J. doi:10.1038/emboj.2011.268

    PubMed  Google Scholar 

  78. Pinault D, O’Brien TJ (2007) Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst. doi:10.1017/S1472928807000209:1–23

    PubMed Central  Google Scholar 

  79. Putzke C, Wemhoner K, Sachse FB, Rinne S, Schlichthorl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Muller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  CAS  PubMed  Google Scholar 

  80. Renigunta V, Zou X, Kling S, Schlichthorl G, Daut J (2014) Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflügers Arch 466:1735–1745. doi:10.1007/s00424-013-1404-z

  81. Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809

    CAS  PubMed  Google Scholar 

  82. Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106:14628–14633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Schiekel J, Lindner M, Hetzel A, Wemhoner K, Renigunta V, Schlichthorl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97:97–105

    Article  CAS  PubMed  Google Scholar 

  84. Schulte U, Müller CS, Fakler B (2011) Ion channels and their molecular environments—glimpses and insights from functional proteomics. Semin Cell Dev Biol 22:132–144. doi:10.1016/j.semcdb.2010.09.015

  85. Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  86. Siemkowicz E, Hansen AJ (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240

    Article  CAS  PubMed  Google Scholar 

  87. Simon RP, Benowitz N, Hedlund R, Copeland J (1985) Influence of the blood–brain pH gradient on brain phenobarbital uptake during status epilepticus. J Pharmacol Exp Ther 234:830–835

    CAS  PubMed  Google Scholar 

  88. Steinke W, Sacco RL, Mohr JP, Foulkes MA, Tatemichi TK, Wolf PA, Price TR, Hier DB (1992) Thalamic stroke. Presentation and prognosis of infarcts and hemorrhages. Arch Neurol 49:703–710

    Article  CAS  PubMed  Google Scholar 

  89. Steriade M, Jones EG, McCormick DA (1997) Thalamus, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  90. Szelies B, Herholz K, Pawlik G, Karbe H, Hebold I, Heiss WD (1991) Widespread functional effects of discrete thalamic infarction. Arch Neurol 48:178–182

    Article  CAS  PubMed  Google Scholar 

  91. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    CAS  PubMed  Google Scholar 

  92. Tong CK, Chesler M (1999) Activity-evoked extracellular pH shifts in slices of rat dorsal lateral geniculate nucleus. Brain Res 815:373–381

    Article  CAS  PubMed  Google Scholar 

  93. van Luijtelaar G, Zobeiri M (2014) Progress and outlooks in a genetic absence epilepsy model (WAG/Rij). Curr Med Chem 21:704–721

    Article  PubMed  Google Scholar 

  94. Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C, Mathie A (2007) Gαq-mediated regulation of TASK3 two-pore domain potassium channels: the role of protein kinase C. Mol Pharmacol 71:1666–1675

    Article  CAS  PubMed  Google Scholar 

  95. Vukadinovic Z, Rosenzweig I (2012) Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction? Neurosci Biobehav Rev 36:960–968. doi:10.1016/j.neubiorev.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  96. Walton KD, Llinas RR (2010) Central pain as a thalamocortical dysrhythmia: a thalamic efference disconnection? In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. Boca Raton

  97. Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bünemann M, Leitner MG, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun (in press)

  98. Ying SW, Tibbs GR, Picollo A, Abbas SY, Sanford RL, Accardi A, Hofmann F, Ludwig A, Goldstein PA (2011) PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 31:10412–10423

  99. Zhu J, Heggelund P (2001) Muscarinic regulation of dendritic and axonal outputs of rat thalamic interneurons: a new cellular mechanism for uncoupling distal dendrites. J Neurosci 21:1148–1159

    CAS  PubMed  Google Scholar 

  100. Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ (1999) An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. J Neurophysiol 81:702–711

    CAS  PubMed  Google Scholar 

  101. Zhu JJ, Uhlrich DJ (1998) Cellular mechanisms underlying two muscarinic receptor-mediated depolarizing responses in relay cells of the rat lateral geniculate nucleus. Neuroscience 87:767–781

    Article  CAS  PubMed  Google Scholar 

  102. Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445–1460

    Article  CAS  PubMed  Google Scholar 

  103. Zhu JJ, Uhlrich DJ, Lytton WW (1999) Properties of a hyperpolarization-activated cation current in interneurons in the rat lateral geniculate nucleus. Neuroscience 92:445–457

    Article  CAS  PubMed  Google Scholar 

  104. Zolles G, Klocker N, Wenzel D, Weisser-Thomas J, Fleischmann BK, Roeper J, Fakler B (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 52:1027–1036. doi:10.1016/j.neuron.2006.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by DFG (FOR 1086, TP2 to S.G.M. and T.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Budde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bista, P., Cerina, M., Ehling, P. et al. The role of two-pore-domain background K+ (K2P) channels in the thalamus. Pflugers Arch - Eur J Physiol 467, 895–905 (2015). https://doi.org/10.1007/s00424-014-1632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1632-x

Keywords

Navigation