Skip to main content

Advertisement

Log in

Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect

  • Rapid Communication
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

With the development of cell-based gene transfer techniques, genetically modified human keratinocytes (Kc) and fibroblasts (Fb) have been proven to be a better choice in wound repair.

Methods

This study was designed to construct in one step a gene-modified artificial skin by a genetically engineered Kc expressing PDGF-BB and Fb expressing VEGF165 and bFGF. The wound healing effect in a full-thickness wound model was then observed. Unmodified artificial skin served as control. On the post-operative days 7, 14, and 21, residual wound area was calculated and skin wound tissues were subjected to biopsy for further investigation.

Results

Compared with unmodified artificial skin, gene-modified artificial skin resulted in a reduced wound contraction and a well-organized human epidermis and better formed dermis.

Conclusions

The results suggest that our two-layer, gene-modified artificial skin improved both vascularization and epidermalization for skin regeneration. This technique could bring about a new approach in the treatment of burns and chronic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreadis ST (2007) Gene-modified tissue-engineered skin: the next generation of skin substitutes. Adv Biochem Eng Biotechnol 103:241–274

    PubMed  CAS  Google Scholar 

  2. Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S (2006) Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med 1:809–821

    Article  PubMed  Google Scholar 

  3. Matouskova E, Broz L, Pokorna E, Konigova R (2002) Prevention of burn wound conversion by allogeneic keratinocytes cultured on acellular xenodermis. Cell Tissue Bank 3:29–35

    Article  PubMed  CAS  Google Scholar 

  4. Antonini A, Zacchigna S, Papa G, Novati F, Pascone M, Giacca M (2007) Improved survival of rat ischemic cutaneous and musculocutaneous flaps after VEGF gene transfer. Microsurgery 27:439–445

    Article  PubMed  Google Scholar 

  5. Nolan K, Millet Y, Ricordi C, Stabler CL (2008) Tissue engineering and biomaterials in regenerative medicine. Cell Transplant 17:241–243

    Article  PubMed  Google Scholar 

  6. Bleiziffer O, Eriksson E, Yao F, Horch RE, Kneser U (2007) Gene transfer strategies in tissue engineering. J Cell Mol Med 11:206–223

    Article  PubMed  CAS  Google Scholar 

  7. Meng X, Sawamura D, Ina S, Tamai K, Hanada K, Hashimoto I (2002) Keratinocyte gene therapy: cytokine gene expression in local keratinocytes and in circulation by introducing cytokine genes into skin. Exp Dermatol 11:456–461

    Article  PubMed  CAS  Google Scholar 

  8. Ponec M, Weerheim A, Kempenaar J, Mommaas AM, Nugteren DH (1988) Lipid composition of cultured human keratinocytes in relation to their differentiation. J Lipid Res 29:949–961

    PubMed  CAS  Google Scholar 

  9. Machens HG, Morgan JR, Berthiaume F, Stefanovich P, Siemers F, Krapohl B, Berger A, Mailander P (2002) Platelet-derived growth factor-AA-mediated functional angiogenesis in the rat epigastric island flap after genetic modification of fibroblasts is ischemia dependent. Surgery 131:393–400

    Article  PubMed  Google Scholar 

  10. Machens HG, Salehi J, Weich H, Munch S, Siemers F, Krapohl BD, Herter KH, Kruger S, Reichert B, Berger A, Vogt P, Mailander P (2003) Angiogenic effects of injected VEGF165 and sVEGFR-1 (sFLT-1) in a rat flap model. J Surg Res 111:136–142

    Article  PubMed  CAS  Google Scholar 

  11. Wong C, Inman E, Spaethe R, Helgerson S (2003) Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost 89:573–582

    PubMed  CAS  Google Scholar 

  12. Elcin YM, Dixit V, Gitnick G (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25:558–565

    Article  PubMed  CAS  Google Scholar 

  13. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  PubMed  CAS  Google Scholar 

  14. Spanholtz TA, Theodorou P, Holzbach T, Wutzler S, Giunta RE, Machens HG (2010) Vascular endothelial growth factor (VEGF(165)) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network-a future therapy for ischemically challenged tissue. J Surg Res. doi:10.1016/j.jss.2010.03.033

    Google Scholar 

  15. Hellberg C, Ostman A, Heldin CH (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    Article  PubMed  CAS  Google Scholar 

  16. Veves A, Sheehan P, Pham HT (2002) A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 137:822–827

    Article  PubMed  CAS  Google Scholar 

  17. Dalemans W (1994) From in vitro to in vivo. Progress in the use of cultured cells for human therapy. Cytotechnology 16:189–194

    Article  PubMed  CAS  Google Scholar 

  18. Markowicz M, Koellensperger E, Neuss S, Koenigschulte S, Bindler C, Pallua N (2006) Human bone marrow mesenchymal stem cells seeded on modified collagen improved dermal regeneration in vivo. Cell Transplant 15:723–732

    Article  PubMed  Google Scholar 

  19. Satoh H, Kishi K, Tanaka T, Kubota Y, Nakajima T, Akasaka Y, Ishii T (2004) Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant 13:405–412

    Article  PubMed  Google Scholar 

  20. Lesiak-Cyganowska E, Jankowska-Steifer E, Kowalewski C, Komender J (2006) Estimation of interaction between human keratinocytes and xenogenic collagen in vitro. Cell Tissue Bank 7:39–46

    Article  PubMed  Google Scholar 

  21. Boyce ST (1998) Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput 36:791–800

    Article  PubMed  CAS  Google Scholar 

  22. Kremer M, Lang E, Berger A (2001) Organotypical engineering of differentiated composite-skin equivalents of human keratinocytes in a collagen-GAG matrix (INTEGRA Artificial Skin) in a perfusion culture system. Langenbecks Arch Surg 386:357–363

    Article  PubMed  CAS  Google Scholar 

  23. Germain L, Remy-Zolghadri M, Auger F (2000) Tissue engineering of the vascular system: from capillaries to larger blood vessels. Med Biol Eng Comput 38:232–240

    Article  PubMed  CAS  Google Scholar 

  24. Xie WG, Lindenmaier W, Gryzybowski S, Machens HG (2005) Influence of vascular endothelial growth factor gene modification on skin substitute grafted on nude mice. Zhonghua Shao Shang Za Zhi 21:203–206

    PubMed  Google Scholar 

  25. Grazul-Bilska AT, Johnson ML, Bilski JJ, Redmer DA, Reynolds LP, Abdullah A, Abdullah KM (2003) Wound healing: the role of growth factors. Drugs Today (Barc) 39:787–800

    Article  CAS  Google Scholar 

  26. Vranckx JJ, Hoeller D, Velander PE, Theopold CF, Petrie N, Takedo A, Eriksson E, Yao F (2007) Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen 15:657–664

    Article  PubMed  Google Scholar 

  27. Chang J, Most D, Bresnick S, Mehrara B, Steinbrech DS, Reinisch J, Longaker MT, Turk AE (1999) Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg 103:1–9

    Article  PubMed  CAS  Google Scholar 

  28. Hirsch T, von Peter S, Dubin G, Mittler D, Jacobsen F, Lehnhardt M, Eriksson E, Steinau HU, Steinstraesser L (2006) Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Mol Med 12:199–207

    Article  PubMed  CAS  Google Scholar 

  29. Zacchigna S, Tasciotti E, Kusmic C, Arsic N, Sorace O, Marini C, Marzullo P, Pardini S, Petroni D, Pattarini L, Moimas S, Giacca M, Sambuceti G (2007) In vivo imaging shows abnormal function of vascular endothelial growth factor-induced vasculature. Hum Gene Ther 18:515–524

    Article  PubMed  CAS  Google Scholar 

  30. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa A, Makino H, Aoki M, Miyake T, Shiraya S, Nakamura T, Ogihara T, Kimata Y, Morishita R (2007) Improvement of survival of skin flaps by combined gene transfer of hepatocyte growth factor and prostacyclin synthase. J Gene Med 9:1087–1094

    Article  PubMed  CAS  Google Scholar 

  32. Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM (2005) The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26:1857–1875

    Article  PubMed  CAS  Google Scholar 

  33. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18:10–18

    Article  PubMed  CAS  Google Scholar 

  34. Rollman O, Jensen UB, Ostman A, Bolund L, Gustafsdottir SM, Jensen TG (2003) Platelet derived growth factor (PDGF) responsive epidermis formed from human keratinocytes transduced with the PDGF beta receptor gene. J Invest Dermatol 120:742–749

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the University of Luebeck Research Fund.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Andreas Lohmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmeyer, J.A., Liu, F., Krüger, S. et al. Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect. Langenbecks Arch Surg 396, 543–550 (2011). https://doi.org/10.1007/s00423-011-0761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-011-0761-3

Keywords

Navigation