Skip to main content
Log in

Tissue engineering of the vascular system: From capillaries to larger blood vessels

  • Cellular Engineering: Tissue Engineering and Biomaterials
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Tissue engineering is a novel approach to the repair of wounded tissues. Application of this technology to the vascular system is important because of the fundamental nutritional role of the vasculature. This perspective is currently being applied to the first tissue-engineered organ: the skin. Knowledge of capillary constitution and factors inducing their formation has led to attempts to induce their formation in reconstructed skin. Such vascular conduits grown in vitro could also benefit the nutrition of tissues and organs in vivo. The paper reviews recent progress in thein-vitro development of vascularised skin and tissue-engineered blood vessels. It points out the necessity of obtaining pure and well-characterised cultures of the different cell populations that are the basic building blocks of the reconstructions. The importance of an adequate cell-culture environment (nutrients and bi-or tri-dimensional scaffolds for cells) for success in elaborating a reconstructed living tissue able to replace the original is emphasised. Engineered tissues can serve not only as tissue replacements but also asin-vitro models for research in organ physiology and physiopathology. These tissues are also attractive vehicles for gene therapy, one of the more promising new methods of disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, W. M. (1997): ‘Prosthetic above-knee femoral-popliteal bypass: indications and choice of graft’,Semin. Vasc. Surg.,10, pp. 3–7

    Google Scholar 

  • Abbott, W. M., Green, R. M., Matsumoto, T., Wheeler, J. R., Miller, N., Veith, F. J., Suggs, W. D., Hollier, L., Money, S., andGarrett, H. E. (1997): ‘Prosthetic above-knee femoropopliteal bypass grafting: results of a multicenter randomized prospective trial. Above-knee femoropopliteal study group’,J. Vasc. Surg.,25, pp. 19–28

    Article  Google Scholar 

  • Abbott, W. M., andVignati, J. J. (1995): ‘Prosthetic grafts: when are they a reasonable alternative?’,Semin Vasc Surg.,8, pp. 236–245

    Google Scholar 

  • Auger, F. A. (1988): ‘The role of cultured autologous human epithelium in large burn wound treatment’,Transplant./Implant. Today,5, pp. 21–26

    Google Scholar 

  • Auger, F. A., Lopez Valle, C. A., Guignard, R., Tremblay, N., Noël, B., Goulet, F., andGermain, L. (1995): ‘Skin equivalent produced with human collagen’,In vitro Cell. Dev. Biol. Anim.,31, pp. 432–439

    Google Scholar 

  • Auger, F. A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V., andGermain, L. (1998): ‘Tissue-engineering human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications”,Med. Biol. Eng. Comput.,36, pp. 801–812

    Google Scholar 

  • Bell, E., Ivarsson, B., andMerrill, C. (1979): ‘Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro’,Proc. Nat. Acad. Sci.,76 pp. 1274–1278

    Google Scholar 

  • Bell, E., Ehrlich, H. P., Buttle, D. J., andNakatsuji, T. (1981): ‘Living tissue formedin vitro and accepted as skin-equivalent tissue of full thickness’,Science,211, pp. 1052–1054

    Google Scholar 

  • Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., Nusgens, B., andNeveux, Y. (1983): ‘The reconstitution of living skin’,J. Invest. Dermatol.,81, pp. 2s-10s

    Article  Google Scholar 

  • Bell, E., Rosenberg, M., Kemp, P., Gay, R., Green, G. D., Muthukumaran, N., andNolte, C. (1991): ‘Recipes for recon-stituting skin’,J. Biomech. Eng.,113, pp. 113–119

    Google Scholar 

  • Berceli, S. A., Borovetz, H. S., Sheppeck, R. A., Moosa, H. H., Warty, V. S., Armany, M. A., Herman, I. M. (1991): ‘Mechanisms of vein graft atherosclerosis: LDL metabolism and endothelial actin reorganization’,J Vasc. Surg.,13, pp. 336–347

    Google Scholar 

  • Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., andHanahan, D. (1999): ‘Effects of angiogenesis inhibitors on multistage carcinogenesis in mice’,Science,284, pp. 808–812

    Article  Google Scholar 

  • Berthod, F., Sahuc, F., Hayek, D., Damour, O., andCollombel, C. (1996): ‘Deposition of collagen fibril bundles by long-term culture of fibroblasts in a collagen sponge’,J. Biomed. Mater. Res.,32, pp. 87–93

    Article  Google Scholar 

  • Berthod, F., andDamour, O. (1997): ‘In vitro reconstructed skin models for wound coverage in deep burns’,Br. J. Dermatol.,136, pp. 809–816

    Google Scholar 

  • Berthod, F., Germain, L., Guignard, R., Lethias, C., Garrone, R., Damour, O., van der Rest, M., andAuger, F. A. (1997): ‘Differential expression of collagens XII and XIV in human skin and in reconstructed skin’,J. Invest. Dermatol.,108 pp. 737–742

    Article  Google Scholar 

  • Bickenbach, J. R. (1981): ‘Identification and behavior of label-retaining cells in oral mucosa and skin’,J. Dent. Res.,60, pp. C: 1611–1620

    Google Scholar 

  • Bickenbach, J. R., andChism, E. (1998): ‘Selection and extended growth of murine epidermal stem cells in culture’,Exp. Cell. Res.,244, pp. 184–195

    Article  Google Scholar 

  • Bischoff, J. (1997): ‘Cell adhesion and angiogenesis’,J. Clin. Invest.,99, pp. 373–376

    Google Scholar 

  • Black, A. F., Berthod, F., L'Heureux, N., Germain, L., andAuger, F. A. (1998): ‘In vitro reconstruction of capillary-like network in a tissue-engineered skin equivalent’,FASEB J.,12, pp. 1331–1340

    Google Scholar 

  • Bordenave, L., Rémy-Zolghadri, M., Fernandez, Ph., Bareille, R., andMidy, D. (1999): ‘Clinical performance of vascular grafts lined with endothelial cells’,Endothelium,6, pp. 267–275

    Google Scholar 

  • Bouvard, V., Germain, L., Rompre, P., Roy, B., andAuger, F. A. (1992): ‘Influence of dermal equivalent maturation on the developmeng of a cultured skin equivalent’,Biochem. Cell Biol.,70, pp. 34–42

    Google Scholar 

  • Boyce, S. T., Christianson, D. J., andHansbrough, J. F. (1988): ‘Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes’,J. Biomed. Mater. Res.,22, pp. 939–957

    Article  Google Scholar 

  • Boyce, S. T., Michel, S., Reichert, U., Shroot, B., andSchmidt, R. (1990): ‘Reconstructed skin from cultured human keratinocytes and fibroblasts on a collagen-glycosaminoglycan biopolymer substrate’,Skin Pharmacol.,3, pp. 136–143

    Google Scholar 

  • Boyce, S. T., Supp, A. P., Harriger, M. D., Greenhalgh, D. G., andWarden, G. D. (1995): ‘Topical nutriments promote engraftment athymic mice’,J. Invest. Dermatol.,104, pp. 345–349

    Article  Google Scholar 

  • Boyce, S. T. (1996): ‘Cultured skin substitutes: a review’,Tissue Eng.,2, pp. 255–266

    Google Scholar 

  • Brooks, P. C., Clark, R. A., andCheresh, D. A. (1994): ‘Requirement of vascular integrin αvβ3 for angiogenesis’,Science,264, pp. 569–571

    Google Scholar 

  • Chen, T. R. (1977): ‘In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechts 33258 stain’,Exp. Cell. Res.,104, pp. 255–262

    Article  Google Scholar 

  • Cines, D. B., Pollak, E. S., Buck, C. A., Loscalzo, J., Zimmerman, G. A., McEver, R. P., Pober, J. S., Wick, T. M., Konkle, B. A., Schwartz, B. S., Barnathan, E. S., McCrae, K. R., Hug, B. A., Schmidt, A. M., andStern, D. M. (1998): ‘Endothelial cells in physiology and in the pathophysiology of vascular disorders’,Blood,91, pp. 3527–3561

    Google Scholar 

  • Clowes, A. W. (1997a): ‘Vascular gene therapy in the 21st century’,Thromb. Haemost.,78, pp. 605–610

    Google Scholar 

  • Clowes, A. W. (1997b): ‘Vascular gene transfer using smooth muscle cells’,Ann. N. Y. Acad. Sci.,811, pp. 293–297

    Google Scholar 

  • Colville-Nash, P. R., andWilloughby, D. A. (1997): ‘Growth factors in angiogenesis: current interest and therapeutic potential’,Mol. Med. Today,3, pp. 14–23

    Google Scholar 

  • Contard, P., Bartel, R. L., Jacobs, L. 2nd,Perlish, J. S., MacDonald, E. D. 2nd,Handler, L., Cone, D., andFleischmajer, R. (1993): ‘Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone’,J. Invest. Dermatol.,100, pp. 35–39

    Article  Google Scholar 

  • Cooper, M. L., Hansbrough, J. F., Spielvogel, R. L., Cohen, R., Bartel, R. L., andNaughton, G. (1991): ‘In vitro optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh’,Biomaterials,12, pp. 243–248

    Article  Google Scholar 

  • Damour, O., Gueugniaud, P. Y., Berthin-Maghit, P., Rousselle, P., Berthod, F., Sahuc, F., andCollombel, C. (1994): ‘A dermal substrate made of collagen-GAG-chitosan for deep burn coverage: first clinical uses’,Clin. Mater.,15, pp. 273–276

    Google Scholar 

  • Damour, O., Braye, F., Foyatier, J. L., Fabreguette, A., Rousselle, P., Vissac, S., andPetit, P. (1997): ‘Cultured autologous epidermis for massive burn wounds: 15 years of practice’ inRouabhia, M. (Ed.): ‘Skin substitute production by tissue engineering: clinical and fundamental applications’ (Landes, Austin), pp. 23–45

  • Diaz-Flores, L., Gutierrez, R., andVarela, H. (1994): ‘Angiogenesis: an update’,Histol. Histopathol.,9, pp. 807–843

    Google Scholar 

  • Fleischmajer, R., Contard, P. Schwart, E., MacDonald, E. D. 2nd,Jacobs, L. 2nd, andSakai, L. Y. (1991): ‘Elastin-associated microfibrils (10 nm) in a three-dimensional fibroblast culture’,97, pp. 638–643

  • Gallico, G. G. 3rd,O'Connor, N. E., Compton, C. C., Kehinde, O., andGreen, H. (1984): ‘Permanent coverage of large burn wounds with autologous cultured human epithelium’,New Engl. J. Med.,331, pp. 448–451

    Google Scholar 

  • Geer, J. C., McGill, H. C., andStrong, J. P. (1961): ‘The fine structure of human atherosclerotic lesions’,Am. J. Pathol.,XXXVIII, (3), pp. 263–275

    Google Scholar 

  • Germain, L., Rouabhia, M., Guignard, R., Carrier, L., Bouvard, V., andAuger, F. A. (1993): ‘Improvement of human keratinocyte isolation and culture using thermolysin’,Burns,19, pp. 99–104

    Article  Google Scholar 

  • Germain, L., andAuger, F. A. (1995): ‘Tissue engineered biomaterials: biological and mechanical characteristics’ in ‘Encyclopedic handbook of biomaterials and bioengineering, Part B; Applications, vol. 1 (Marcel Dekker, Inc. Publishers, New York, USA), chap 25, pp. 699–734

    Google Scholar 

  • Germain, L., Auger, F. A. Grandbois, E., Guignard, R., Giasson, M., Boisjoly, H., andGuerin, S. L. (1999): ‘Reconstructed human cornea producedin vitro by tissue engineering’,Pathobiology,67, pp. 140–147

    Article  Google Scholar 

  • Ghazizadeh, S., Kolodka, T. M., Taichman, L. B. (1998): ‘The skin as a vehicle for gene therapy’ inJeson, J. L. (Ed.) ‘Principles of molecular medicine’ (Humana Press Inc.), 82, pp. 775–779

  • Bilchrest, B. A. (1983): ‘In vitro assessment of keratinocyte aging’,J. Invest. Dermatol.,81, pp. 184s-189s

    Google Scholar 

  • Goulet, F., Germain, L., Caron, C., Rancourt, D., Normand, A., andAuger, F. A. (1997a): ‘Tissue-engineered ligament’ inYahia, L. H. (Ed.) ‘Ligaments and ligamentoplasties’ (Springer-Verlag, Berlin, Heidelberg), pp. 367–377

    Google Scholar 

  • Goulet, F., Germain, L., Rancourt, D., Caron, C., Normand, A., andAuger, F. A. (1997b): ‘Tendons and ligaments’ inLanza, R., Langer, R., andChick, W. L. (Eds.) ‘Textbook of tissue engineering’ (Landes R. G. Co & Academic Press. Ltd. Austin, Texas), pp. 633–644

    Google Scholar 

  • Green, H., Kehinde, O., andThomas, J. (1979): ‘Growth of cultured human epidermal cells into multiple ephithelia suitable for grafting’,Proc. Nat. Acad. Sci. USA,76, pp. 5665–5668

    Google Scholar 

  • Green, H., andBarrandon, Y. (1988): ‘Cultured epidermal cells and their use in the generation of epidermis’,NIPS,3, pp. 54–56

    Google Scholar 

  • Greenhalgh, D. A., Rothnagel, J. A., andRoop, D. R. (1994): ‘Epidermis: an attractive target tissue for gene therapy’,J. Invest. Dermatol.,103, pp. 63S-69S

    Google Scholar 

  • Hansbrough, J. F., Boyce, S. T., Cooper, M. L., andForeman, T. J. (1989): ‘Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate’,JAMA,262, pp. 2125–2130

    Article  Google Scholar 

  • Hirai, J., andMatsuda, T. (1996): ‘Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process’,Cell Transplant.,5, pp. 93–105

    Google Scholar 

  • Ingber, D. E., andFolkman, J. (1989): ‘Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesisin vitro: role of extracellular matrix’,J. Cell. Biol.,109, pp. 317–330

    Article  Google Scholar 

  • Jiang, C. K., Connolly, D., andBlumenberg, M. (1991): ‘Comparison of methods for transfection of human epidermal kerationocytes’,J. Invest. Dermatol.,97, pp. 969–973

    Article  Google Scholar 

  • Jones, P. H., andWatt, F. M. (1993): ‘Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression’,Cell,73, pp. 713–724

    Article  Google Scholar 

  • Jones, P. H., Harper, S., andWatt, F. M. (1995): ‘Stem cell patterning and fate in human epidermis’,Cell,80, pp. 83–93

    Article  Google Scholar 

  • Khavari, P. A., andKrueger, G. G. (1997): ‘Cutaneous gene therapy’,Dermatol. Clin.,15, pp. 27–35

    Google Scholar 

  • Krueger, G. G., Morgan, J. R., Jorgensen, C. M., Schmidt, L., Li, H. L., Kwan, M. K., Boyce, S. T., Wiley, H. S., Kaplan, J., andPetersen, M. J. (1994): ‘Genetically modified skin to treat disease: potential and limitations’,J. Invest. Dermatol.,103, pp. 76S-84S

    Google Scholar 

  • Langer, R., andVacanti, J. P. (1993): ‘Tissue engineering’,Science,260, pp. 920–926

    Google Scholar 

  • L'Heureux, N., Germain, L., Labbé, R., andAuger, F. A. (1993): ‘In vitro construction of human vessel from cultured vascular cells: a morphologic study’,J. Vasc. Surg.,17, pp. 499–509

    Google Scholar 

  • L'Heureux, N., Pâquet, S., Labbé, R., Germain, L., andAuger, F. A. (1998): ‘A completely biological tissue-engineered human blood vessel’,FASEB J.,12, pp. 47–56

    Google Scholar 

  • Lopez Valle, C. A., Auger, F. A., Rompre, P., Bouvard, V., andGermain, L. (1992): ‘Peripheral anchorage of dermal equivalents’,Br. J. Dermatol.,127, pp. 365–371

    Google Scholar 

  • Lu, C. Y., Khair-el-Din, T. A., Dawidson, I. A., Butler, T. M., Brasky, K. M., Vazquez, M. A., andSicher, S. C. (1994): ‘Xenotransplantation’,FASEB J.,8, pp. 1122–1130

    Google Scholar 

  • Marin, J. (1995): ‘Age-related changes in vascular responses: a review’,Mech. Ageing Dev.,79, pp. 71–114

    Article  Google Scholar 

  • McKeehan, W. L., Barnes, D., Reid, L., Stanbridge, E., Murakami, H., andSato, G. H. (1990): ‘Frontiers in mammalian cell culture’,In Vitro Cell. Dev. Biol.,26, pp.9–23

    Google Scholar 

  • Michel, M., Torok, N., Godbout, M.-J., Lussier, M., Gaudreau, P., Royal, A., andGermain, L. (1996): ‘Keratin 19 as a biochemical marker of skin stem cellsin vivo andin vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage’,J. Cell. Sci.,109 pp. 1017–1028

    Google Scholar 

  • Michel, M., L'Heureux, N., Pouliot, R., Xu, W., Auger, F. A., andGermain, L. (1999_: ‘Characterization of a new tissue-engineered human skin equivalent with hair’,In Vitro Cell Dev. Biol. Anim.,35, pp. 318–326

    Google Scholar 

  • Morgan, J. R., Barrandon, Y., Green, H., andMulligan, R. C. (1987): ‘Expression of an exogenous growth hormone gene by transplantable human epidermal cells’,Science,237, pp. 1476–1479

    Google Scholar 

  • Morris, R. J., Fisher, S. M., andSlaga, T. J. (1985): ‘Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations’,J. Invest. Dermatol.,84, pp. 277–281

    Article  Google Scholar 

  • Morris, R. J., andPotten, C. S. (1994): ‘Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cellsin vitro’,Cell Prolif.,27, pp. 279–289

    Google Scholar 

  • Morris, R. J., andPotten, C. S. (1999): ‘Highly persistent label-retaining cells in the hair follicules of mice and their fate following induction of anagen’,J. Invest. Dermatol. 112, pp. 470–475

    Article  Google Scholar 

  • Moulin, V., Auger, F. A., O'Connor-McCourt, M., andGermain, L. (1997): ‘Fetal and postnatal sera differentially modulate human dermal fibroblast phenotypic and functional featuresin vitro’,J. Cell. Physiol.,171, pp. 1–10

    Article  Google Scholar 

  • Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., andLanger, R. (1999): ‘Functional arteries grownin vitro’,Science,284, pp. 498

    Article  Google Scholar 

  • Oberpenning, F., Meng, J., Yoo, J. J., andAtala, A. (1999): ‘De novo reconstitution of a functional mammalian urinary bladder by tissue engineering’,Nat. Biotechnol. 17 pp. 149–155

    Google Scholar 

  • O'Connor, N. E., Mulliken, J. B., Banks-Schlegel, S., Kehnde, O., andGreen, H. (1981): ‘Grafting of burns with cultured epithelium prepared from autologous epidermal cells’,Lancet,1, pp. 75–78

    Google Scholar 

  • Owens, G. K. (1995): ‘Regulation of differentiation of vascular smooth muscle cells’,Physiol Rev.,75, pp. 487–517

    Google Scholar 

  • Paquette, J. S., Goulet, F., Boulet, L. P., Laviolette, M., Tremblay, N., Chakir, J., Germain, L., andAuger, F. A. (1998): ‘Three-dimensional production of bronchiin vitro’,Can. Respir. J.,5, p. 43

    Google Scholar 

  • Pickering, J. G., Jekanowski, J., Weir, L., Takeshita, S., Losordo, D. W., andIsner, J. M. (1994): ‘Liposome-mediated gene transfer into human vascular smooth muscle cells’,Circulartion,89, pp 13–21

    Google Scholar 

  • Pruniéras, M., Régnier, M., andWoodley, D. (1983): ‘Methods for cultivation of keratinocytes with air-liquid interface’,J. Invest. Dermatol.,81, pp. 28s-33s

    Google Scholar 

  • Rémy, M., Bareille, R., Villars, F., Rouais, F., Gorodkov, A. J., andBordenave, L. (1998): ‘Endothelial cells lining a polyester fabrics express a procoagulant phenotypein vitro’,Med. Biol. Eng. Comput.,36, pp. 256–257

    Google Scholar 

  • Rémy, M., Valli, N., Brethes, D., Montis, K., Dobrova, N. B., Novikova, S. P., Gorodkov, A. J., andBordenave, L. (1999): ‘In vitro andin situ Intercellular Adhesion Molecule-1 (ICAM-1) expression by endothelial cells lining a polyester fabric’,Biomaterials,20, pp. 241–251

    Article  Google Scholar 

  • Rheinwald, J. G., andGreen, H. (1975): ‘Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells’,Cell,6, pp 331–344

    Article  Google Scholar 

  • Rheinwald, J. G., andGreen, H. (1977): ‘Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes’,Nature,265, pp. 421–424

    Article  Google Scholar 

  • Risau, W. (1997): ‘Mechanisms of angiogenesis’,Nature,386, pp. 671–674

    Google Scholar 

  • Sahuc, F., Nakazawa, K., Berthod, F., Damour, O., andCollombel, C. (1996): ‘Mesenchymal-epithelial interactions regulate gene expression of type VII collagen and kalinin in keratinocytes and dermal-epidermal junction formation in a skin equivalent model’,Wound Repair Regen.,4, pp. 93–102

    Article  Google Scholar 

  • Sayers, R. D., Raptis, S., Berce, M., andMiller, J. H. (1998): ‘Long-term results of femorotibial bypass with vein or polytetra-fluoroethylene’,Br. J. Surg.,85, pp. 934–938

    Article  Google Scholar 

  • Sepp, N., Fritsch, P., andLuger, T. A. (1997): ‘Endothelial cells and angiogenesis’,Exp. Dermatol.,6, pp. 272–273

    Google Scholar 

  • Slivka, S. R., Landeen, L., Donnelly, T., Zimber, M., Naughton, G. K., andBartel, R. L. (1991): ‘Characterization of a three dimensional co-culture of neonatal human fibroblast and keratinocytes’,J. Invest. Dermatol.,96, p. 544

    Google Scholar 

  • Stoclet, J. C., Andriantsitohaina, R., L'Heureux, N., Martinez, C., Germain, L., andAuger, F. A. (1996): ‘Use of human vessels and human smooth muscle cells in pharmacology’,Cell Biol. Toxicol.,12, pp. 223–225

    Article  Google Scholar 

  • Tan, O. T., andStafford, T. J. (1971): ‘Cutaneous circulation’ inFitzpatrick, T. B., Eisen, A. Z., Wolff, K., Freedberg, I. M., andAusten, K. F. (Eds.) ‘Dermatology in general medicine, 3rd edn’ (McGraw-Hill, Inc.), pp. 357–366

  • Teumer, J., Lindahl, A., andGreen, H. (1990): ‘Human growth hormone in the blood of athymic mice grafted with cultures of hormone-secreting human keratinocytes’,FASEB J.,4, pp. 3245–3250

    Google Scholar 

  • Thyberg, J., Hedin, U., Sjolund, M., Palmberg, L., andBottger, B. A. (1990): ‘Regulation of differentiated properties and proliferation of arterial smooth muscle cells’,Arteriosclerosis,10, pp. 966–990

    Google Scholar 

  • Trueb, J., andTrueb, B. (1992): ‘Type XIV collagen is a variant of undulin’,Eur. J. Biochem.,207, pp. 549–557

    Article  Google Scholar 

  • Veelken, H., Jesuiter, H., Mackensen, A., Kulmburg, P., Schultze, J., Rosenthal, F., Mertelsmann, R., andLindemann, A. (1994): ‘Primary fibroblasts from human adults as target cells for ex vivo transfection and gene therapy”,Hum. Gene Ther.,5, pp. 1203–1210

    Google Scholar 

  • Veith, F. J., Gupta, S. K., Ascer, E., White-Flores, S., Samson, R. H., Scher, L. A., Towne, J. B., Bernhard, V. M., Bonier, P., Flinn, W. R., Astelford, P., Yao, J. S. T., andBergan, J. J. (1986): ‘Six year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions’,J. Vasc. Surg.,3, pp. 104–114

    Google Scholar 

  • Vernon, R. B., andSage, E. H. (1995): ‘Between molecules and morphology. Extracellular matrix and creation of vascular form,’Am. J. Pathol.,147, pp. 873–883

    Google Scholar 

  • Villaschi, S., andNicosia, R. E. (1994): ‘Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model: modulation of angiogenesis and collagen gel contraction’,Lab. Invest.,71 pp. 291–299

    Google Scholar 

  • Weinberg, C. B., andBell, E. (1986): ‘A blood vessel model constructed from collagen and cultured vascular cells’,Science,231, pp. 397–400

    Google Scholar 

  • Whalen, E., Donnelly, T. A., Naughton, G., andRheins, L. A. (1994): ‘The development of three-dimensionalin vitro human tissue models’,Hum. Exp. Toxicol.,13, pp. 853–859

    Google Scholar 

  • Xu, X. M., Ohashi, K., Sanduja, S. K., Ruan, K. H., Wang, L. H., andWu, K. K. (1993): ‘Enhanced prostacyclin synthesis in endothelial cells by retovirus-mediated transfer of prostaglandin H synthase cDNA’,J. Clin. Invest.,91, pp. 1843–1849

    Google Scholar 

  • Young, D. M., andMathes, S. J. (1994): ‘Skin and subcutaneous tissue’ in ‘Principles of surgery, 6th edn’, Schwartz Shires Spencer, (McGraw-Hill), pp. 515–530

  • Young, D. M., Greulich, K. M., andWeier, H. G. (1996): ‘Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice’,J. Burn Care Rehabil.,17, pp. 305–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Germain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germain, L., Rémy-Zolghadri, M. & Auger, F. Tissue engineering of the vascular system: From capillaries to larger blood vessels. Med. Biol. Eng. Comput. 38, 232–240 (2000). https://doi.org/10.1007/BF02344782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344782

Keywords

Navigation