Skip to main content
Log in

Firing patterns in a conductance-based neuron model: bifurcation, phase diagram, and chaos

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Responding to various stimuli, some neurons either remain resting or can fire several distinct patterns of action potentials, such as spiking, bursting, subthreshold oscillations, and chaotic firing. In particular, Wilson’s conductance-based neocortical neuron model, derived from the Hodgkin–Huxley model, is explored to understand underlying mechanisms of the firing patterns. Phase diagrams describing boundaries between the domains of different firing patterns are obtained via extensive numerical computations. The boundaries are further studied by standard instability analyses, which demonstrates that the chaotic neural firing could develop via period-doubling and/or period- adding cascades. Sequences of the firing patterns often observed in many neural experiments are also discussed in the phase diagram framework developed. Our results lay the groundwork for wider use of the model, especially for incorporating it into neural field modeling of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alligood KT, Sauer TD, Yorke JA (1997) Chaos, an introduction to dynamical systems. Springer, New York

    Google Scholar 

  • Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102: 1743–1748

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F (2008) Ion channels: from conductance to structure. Neuron 60: 456–468

    Article  PubMed  CAS  Google Scholar 

  • Chay TR (1985) Chaos in a three-variable model of an excitable cell. Physica D 15: 233–242

    Article  Google Scholar 

  • Chay TR, Rinzel J (1985) Bursting, beating, and chaos in an excitable membrane model. Biophys J 47: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Connor JA, Walter D, McKown R (1977) Neural repetitive firing: modifications of the Hodgkin–Huxley axon suggested by experimental results from Crustacean axons. Biophys J 18: 81–102

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. Public Libr Sci Comput Biol 4:e1000092

    Google Scholar 

  • Doi S, Kumagai S (2005) Generation of very slow neural rhythms and chaos near the Hopf bifurcation in single neuron models. J Comput Neurosci 19: 325–356

    Article  PubMed  Google Scholar 

  • Ermentrout GB (1994) Reduction of conductance-based models with slow synapses to neural nets. Neural Comput 6: 679–695

    Article  Google Scholar 

  • Ermentrout GB (1998a) Linearization of f–I curves by adaptation. Neural Comput 10: 1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB (1998b) Neural networks as a spatio-temporal pattern-forming systems. Rep Prog Phys 61: 353–430

    Article  Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13: 1285–1310

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Guckenheimer J, Oliva R (2002) Chaos in the Hodgkin–Huxley model. SIAM J Appl Dyn Syst 1: 105–114

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  • Holden AV, Fan YS (1992) From simple to simple bursting oscillatory behaviour via chaos in the Rose–Hindemarsh model for neuronal activity. Chaos Soliton Fractals 2: 221–236

    Article  Google Scholar 

  • Izhikevich EM (2005) Which model to use for cortical spiking neurons. IEEE Trans Neural Netw 15: 1063–1070

    Article  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT, Gambridge

    Google Scholar 

  • Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Lample I, Yarom Y (1997) Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience 78: 325–341

    Article  Google Scholar 

  • Markram H, Toledo-Rodrigurez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5: 793–807

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215

    Article  PubMed  CAS  Google Scholar 

  • Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99: 335–347

    Article  PubMed  Google Scholar 

  • Pedroarena C, Llinas R (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci USA 94: 724–728

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich MI, Abarbanel HDI (1998) The role of chaos in neural systems. Neuroscience 87: 5–14

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78: 1213–1265

    Article  Google Scholar 

  • Rinzel JM (1985) Excitation dynamics: insights from simplified membrane models. Fed Proc 44: 2944–2946

    PubMed  CAS  Google Scholar 

  • Rinzel JM, Ermentrout GB (1989) Analysis of neuronal excitability. In: Koch C, Segev I (eds) Methods of Neuronal Modeling, MIT Press, Cambridge, MA

  • Robinson PA, Kim JW (2012) Spike, rate, field, and hybrid methods for treating neuronal dynamics and interactions. J Neurosci Methods 205: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Wu H, Kim JW (2008) Neural rate equations for bursting dynamics derived from conductance-based equations. J Theor Biol 250: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Rose RM, Hindmarsh JL (1985) The assembly of ionic currents in a thalamic neuron I: the three-dimensional model. Proc R Soc Lond B 237: 267–288

    Article  Google Scholar 

  • Rubin J, Wechselberger M (2007) Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model. Biol Cybern 97: 5–32

    Article  PubMed  Google Scholar 

  • Rubin J, Wechselberger M (2008) The selection of mixed-mode oscillations in a Hodgkin–Huxely model with multiple timescales. Chaos 18: 015105–015112

    Article  PubMed  Google Scholar 

  • Shriki O, Hansel D, Sompolinsky H (2003) Rate models for conductance-based cortical neuronal networks. Neural Comput 15: 1809–1841

    Article  PubMed  Google Scholar 

  • Staba RJ, Wilson CL, Fried I, Engel J (2002) Single neuron burst firing in the human hippocampus during sleep. Hippocampus 12: 724–734

    Article  PubMed  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85: 1965–1985

    Google Scholar 

  • Terman D (1991) Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J Appl Math 51: 1418–1450

    Article  Google Scholar 

  • Touboul JD, Brette R (2008) Dynamics and birfurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99: 319–334

    Article  PubMed  Google Scholar 

  • Touboul JD, Ermentrout GB (2011) Finite-size and correlation-induced effects in mean-field dynamics. J Comput Neurosci 31: 453–484

    Article  PubMed  Google Scholar 

  • Wang XJ (1993) Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D 62: 263–274

    Article  Google Scholar 

  • Wilson HR (1999a) Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200: 375–388

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR (1999b) Spikes, decisions, and actions. Oxford University Press, Oxford

    Google Scholar 

  • Wu H, Robinson PA, Kim JW (2011) Firing responses of bursting neurons with delayed feedback. J Comput Neurosci 31: 61–71

    Article  PubMed  Google Scholar 

  • Yang Z, Lu Q, Li L (2006) The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos Soliton Fractals 27: 689–697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Watts, A.L., Kim, J.W. et al. Firing patterns in a conductance-based neuron model: bifurcation, phase diagram, and chaos. Biol Cybern 107, 15–24 (2013). https://doi.org/10.1007/s00422-012-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0520-8

Keywords

Navigation