Skip to main content
Log in

Human temperature regulation when given the opportunity to behave

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study aimed to test the primary hypotheses that human thermoregulatory behavior is: (1) initiated before changes in rectal or esophageal temperatures; and (2) accompanied by indiscernible differences in sweating or shivering. This was achieved by placing nine, healthy, males in a situation where they were free to move between a cold (~8 °C) and a hot (~46 °C) environment. Upon behaving [i.e., move from cold to hot (C→H) or from hot to cold (H→C)], skin, rectal, and esophageal temperatures, indices of cutaneous vasomotor tone, metabolism and evaporation, and local and whole-body thermal discomfort were recorded. Rectal temperatures were similar at H→C (37.1 ± 0.2 °C) and C→H (37.1 ± 0.2 °C); yet esophageal temperatures were higher at C→H (36.9 ± 0.2 vs. 36.8 ± 0.2 °C). Skin temperature (C→H, 28.4 ± 0.9 vs. H→C, 35.0 ± 0.6 °C) and vasomotor tone were drastically different upon the decision to behave. Metabolic heat production was lower at H→C (79 ± 10 W/m2) than at C→H (101 ± 20 W/m2), yet there were no statistical differences in evaporative heat loss (C→H, 23 ± 33 W/m2 vs. H→C, 52 ± 36 W/m2). Whole-body thermal discomfort was similar at C→H and H→C, yet there were inter-segmental differences. These findings indicate that skin temperature, not core temperature, plays a signaling role in the decision to behaviorally thermoregulate. However, this behavior does not occur in the complete absence of autonomic thermoregulatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arens E, Zhang H, Huizenga C (2006a) Partial- and whole-body thermal sensation and comfort—part I: uniform environmental conditions. J Therm Biol 31:53–59

    Article  Google Scholar 

  • Arens E, Zhang H, Huizenga C (2006b) Partial- and whole-body thermal sensation and comfort—part II: non-uniform environmental conditions. J Therm Biol 31:60–66

    Article  Google Scholar 

  • Attia M, Engel P (1981) Thermal alliesthesial response in man is independent of skin location stimulated. Physiol Behav 27:439–444

    Article  PubMed  CAS  Google Scholar 

  • Barber BJ, Crawford EC (1979) Dual threshold control of peripheral temperature in the lizard dipsosaurus-dorsalis. Physiol Zool 52:250–263

    Google Scholar 

  • Benzinger T (1969) Heat regulation—homeostasis of central temperature in man. Physiol Rev 49:671–759

    PubMed  CAS  Google Scholar 

  • Benzinger TH, Pratt AW, Kitzinger C (1961) The thermostatic control of human metabolic heat production. Proc Natl Acad Sci USA 47:730–739

    Article  PubMed  CAS  Google Scholar 

  • Bratincsak A, Palkovits M (2005) Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135:525–532

    Article  PubMed  CAS  Google Scholar 

  • Cabanac M, Massonnet B (1977) Thermoregulatory responses as a function of core temperature in humans. J Physiol 265:587–596

    PubMed  CAS  Google Scholar 

  • Cabanac M, Bleichert R, Massonne B (1972) Preferred skin temperature as a function of internal and mean skin temperature. J Appl Physiol 33:699–703

    PubMed  CAS  Google Scholar 

  • Carlisle HJ (1968) Peripheral thermal stimulation and thermoregulatory behavior. J Comp Physiol Psychol 66:507–510

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Matsukawa T, Sessler DI, Ozaki M, Kurz A, Merrifield B, Lin H, Olofsson P (1995) Increasing mean skin temperature linearly reduces the core-temperature thresholds for vasoconstriction and shivering in humans. Anesthesiology 82:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Cranston WI, Gerbrandy J, Snell ES (1954) Oral, rectal and oesophageal temperatures and some factors affecting them in man. J Physiol 126:347–358

    PubMed  CAS  Google Scholar 

  • Crowe JP, Moore RE (1974) Physiological and behavoural responses of aged men to passive heating. J Physiol 236:43–45 (Proceedings)

    Google Scholar 

  • Dubois D, Dubois EF (1916) A formula to estimate approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  CAS  Google Scholar 

  • Epstein AN, Milestone R (1968) Showering as a coolant for rats exposed to heat. Science 160:895–896

    Article  PubMed  CAS  Google Scholar 

  • Flouris A, Cheung S (2008) Human conscious response to thermal input is adjusted to changes in mean body temperature. Br J Sports Med 43:199–203

    Article  PubMed  Google Scholar 

  • Flouris AD, Cheung SS (2010) Thermometry and calorimetry assessment of sweat response during exercise in the heat. Eur J Appl Physiol 108:905–911

    Article  PubMed  Google Scholar 

  • Flouris AD, Cheung SS (2011) Thermal basis of finger blood flow adaptations during abrupt perturbations in thermal homeostasis. Microcirculation 18:56–62

    Article  PubMed  Google Scholar 

  • Gagge AP, Stolwijk JA, Hardy JD (1967) Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res 1:1–20

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (1985) Relationship between autonomic and behavioral thermoregulation in the mouse. Physiol Behav 34:687–690

    Article  PubMed  CAS  Google Scholar 

  • Graichen H, Rascati R, Gonzalez RR (1982) Automatic dew-point temperature sensor. J Appl Physiol 52:1658–1660

    PubMed  CAS  Google Scholar 

  • Hardy JD (1971) Thermal comfort and health. Ashrae J 13:43–51

    Google Scholar 

  • Hardy JD, Dubois EF (1938) The technic of measuring radiation and convection. J Nutr 15:461–475

    CAS  Google Scholar 

  • Hardy JD, Gagge AP, Stolwijk JA (eds) (1970) Physiological and behavioral temperature regulation. Charles C Thomas, Springfield

    Google Scholar 

  • House JR, Tipton MJ (2002) Using skin temperature gradients or skin heat flux measurements to determin thresholds of vasoconstriction and vasodilatation. Eur J Appl Physiol 88:141–145

    Article  PubMed  Google Scholar 

  • ISO8996 (1989) Ergonomics of thermal environments—determination of metabolic heat production. Organization ISO, Geneva

    Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40:497–504

    Article  PubMed  CAS  Google Scholar 

  • Kenney WL (1998) Heat flux and storage in hot environments. Int J Sports Med 19:S92–S95

    Article  PubMed  Google Scholar 

  • Kolka MA, Quigley MD, Blanchard LA, Toyota DA, Stephenson LA (1993) Validation of a temperature telemetry system during moderate and strenuous exercise. J Therm Biol 18:203–210

    Article  Google Scholar 

  • Mekjavic IB, Rempel ME (1990) Determination of esophageal probe insertion length based on standing and sitting height. J Appl Physiol 69:376–379

    PubMed  CAS  Google Scholar 

  • Mercer J (2001) Glossary of terms for thermal physiology, 3rd edn. Revised by the IUPS thermal commission. Jap J Physiol 51:245–280

    Google Scholar 

  • Mitchell JW, Nadel ER, Stolwijk JA (1972) Respiratory weight losses during exercise. J Appl Physiol 32:474–476

    PubMed  CAS  Google Scholar 

  • Mower GD (1976) Perceived intensity of peripheral thermal stimuli is independent of internal body temperature. J Comp Physiol Psychol 90:1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yoda T, Crawshaw LI, Yasuhara S, Saito Y, Kasuga M, Nagashima K, Kanosue K (2008) Regional differences in temperature sensation and thermal comfort in humans. J Appl Physiol 105:1897–1906

    Article  PubMed  Google Scholar 

  • Nakamura M, Yoda T, Crawshaw LI, Kasuga M, Uchida Y, Tokizawa K, Nagashima K, Kanosue K (2012) Relative importance of different surface regions for thermal comfort in humans. Eur J Appl Physiol. doi: 10.1007/s00421-012-2406-9

  • Parsons KC (2003) Human thermal environments. Taylor and Francis, London

    Google Scholar 

  • Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  PubMed  CAS  Google Scholar 

  • Rowell LB, Brengelmann GL, Murray JA (1969) Cardiovascular responses to sustained high skin temperature in resting man. J Appl Physiol 27:673–680

    PubMed  CAS  Google Scholar 

  • Rubinstein EH, Sessler DI (1990) Skin-surface temperature-gradients correlate with fingertip blood-flow in humans. Anesthesiology 73:541–545

    Article  PubMed  CAS  Google Scholar 

  • Schlader ZJ, Prange HD, Mickleborough TD, Stager JM (2009) Characteristics of the control of human thermoregulatory behavior. Physiol Behav 98:557–562

    Article  PubMed  CAS  Google Scholar 

  • Schlader ZJ, Stannard SR, Mundel T (2010) Human thermoregulatory behavior during rest and exercise—a prospective review. Physiol Behav 99:269–275

    Article  PubMed  CAS  Google Scholar 

  • Schlader ZJ, Simmons SE, Stannard SR, Mundel T (2011a) The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol Behav 103:217–224

    Article  PubMed  CAS  Google Scholar 

  • Schlader ZJ, Simmons SE, Stannard SR, Mundel T (2011b) Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol 11:1631–1639

    Article  Google Scholar 

  • Schlader ZJ, Stannard SR, Mundel T (2011c) Evidence for thermoregulatory behavior during self-paced exercise in the heat. J Therm Biol 36:390–396

    Article  Google Scholar 

  • Schmidt I (1978) Interactions of behavioral and autonomic thermoregulation in heat stressed pigeons. Pflug Arch Eur J Phys 374:47–55

    Article  CAS  Google Scholar 

  • Siri WE (1961) Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A (eds) Techniques for measuring body composition. National Academy of Sciences, National Research Council, Washington DC, pp 223–243

    Google Scholar 

  • Stitt JT, Adair ER, Nadel ER, Stolwijk JA (1971) The relation between behavior and physiology in the thermoregulatory response of the squirrel moneky. J Physiol (Paris) 63:424–427

    CAS  Google Scholar 

  • Taylor NAS, Allsopp NK, Parkes DG (1995) Preferred room-temperature of young vs aged males—the influence of thermal sensation, thermal comfort, and affect. J Gerontol A Biol 50:M216–M221

    Article  CAS  Google Scholar 

  • Tikuisis P (2003) Heat balance precedes stabilization of body temperatures during cold water immersion. J Appl Physiol 95:89–96

    PubMed  Google Scholar 

  • Werner J, Mekjavic IB, Taylor NAS (2008) Concepts in physiological regulation: a thermoregulatory perspective. In: Taylor NAS, Groeller H (eds) Physiological bases of human performance during work and exercise. Churchill Livingston Elsevier, Philadelphia

    Google Scholar 

  • Wilson TE, Sauder CL, Kearney ML, Kuipers NT, Leuenberger UA, Monahan KD, Ray CA (2007) Skin-surface cooling elicits peripheral and visceral vasoconstriction in humans. J Appl Physiol 103:1257–1262

    Article  PubMed  Google Scholar 

  • Wingo JE, Low DA, Keller DM, Brothers RM, Shibasaki M, Crandall CG (2010) Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans. J Appl Physiol 109:1301–1306

    Article  PubMed  Google Scholar 

  • Wissler EH (2008) A quantitative assessment of skin blood flow in humans. Eur J Appl Physiol 104:145–157

    Article  PubMed  Google Scholar 

  • Wyss CR, Gl Brengelm, Johnson JM, Rowell LB, Niederbe M (1974) Control of skin blood-flow, sweating, and heart-rate—role of skin vs. core temperature. J Appl Physiol 36:726–733

    PubMed  CAS  Google Scholar 

  • Zhang H, Arnes E, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments, part iii: whole-body sensation and comfort. Build Environ 45:399–410

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the subjects for participating in the study. ZJS was supported by a New Zealand International Doctoral Research Scholarship (Education New Zealand). This study was funded by the Massey University School of Sport and Exercise post-graduate research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary J. Schlader.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlader, Z.J., Perry, B.G., Jusoh, M.R.C. et al. Human temperature regulation when given the opportunity to behave. Eur J Appl Physiol 113, 1291–1301 (2013). https://doi.org/10.1007/s00421-012-2544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2544-0

Keywords

Navigation