Skip to main content

Advertisement

Log in

A quantitative assessment of skin blood flow in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Various aspects of skin blood flow (SkBF) in human beings have been studied experimentally for more than seven decades. While reasonably complete phenomenological descriptions of individual factors have emerged from those investigations, little effort has been devoted to assembling the component parts into a coherent description of the entire system. This paper describes an effort to do that. Although the result is essentially a mathematical model of human SkBF, the model is firmly based on empirical data and not merely an abstract theoretical construct. We found that experimental data for human forearm blood flow (FBF) from many sources are well represented by an equation in which the rate of cutaneous blood flow (q s) is defined by the equation q sq s,r AVD × CVCM × CVCL × CVCE. The coefficient q s,r is the perfusion rate at a reference state, and the four component factors are defined as follows: AVD defines centrally mediated active vasodilation as a function of central temperature (T c), mean skin temperature \(({\bar{T}}_{{\rm s}}),\) and intensity of exercise \(({\dot{V}}_{{\rm O}_2});\) CVCM defines reflexly mediated cutaneous vasoconstriction as a function of \({\bar{T}}_{{\rm s}};\) CVCL defines locally mediated cutaneous vasoconstriction as a function of local skin temperature (T s); and CVCE defines the effect of exercise on cutaneous vasoconstriction and mean arterial pressure. The definition of each component function is based on experimental data. Two conclusions are particularly significant. One is that the study provides a rational explanation, based on the role of \({\bar{T}}_{{\rm s}},\) for previously disparate opinions about the non-thermal effect of exercise on active cutaneous vasodilation. The other is that it establishes that the four factors combine multiplicatively, and not additively, as previous investigators have suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez GE, Zhao K, Kosiba WA, Johnson JM (2006) Relative roles of local and reflex components of cutaneous vasoconstriction during skin cooling in humans. J Appl Physiol 100:2083–2088

    Article  PubMed  Google Scholar 

  • Barcroft H, Edholm OG (1943) The effect of temperature on blood flow and deep temperature in the human forearm. J Physiol 102:5–20

    PubMed  CAS  Google Scholar 

  • Barcroft H, Edholm OG (1946) Temperature and blood flow in the human forearm. J Physiol 104:366–376

    PubMed  CAS  Google Scholar 

  • Barcroft H, Bonnar WMcK, Edholm OG, Effron AS (1943) On sympathetic vasoconstrictor tone in human skeletal muscle. J Physiol 102:21–31

    PubMed  CAS  Google Scholar 

  • Barcroft H, Bock KD, Hensel H, Kitchin AH (1955) Die Muskeldurchblutung des Menschen bei indirekter Erwärmung und Abkühlung. Pflügers Arch Gesamte Physiol 261:199–210

    Article  CAS  Google Scholar 

  • Brengelmann GL, Wyss CR, Rowell LB (1973) Control of forearm skin blood flow during periods of steadily increasing skin temperature. J Appl Physiol 35:77–84

    PubMed  CAS  Google Scholar 

  • Brengelmann GL, Johnson JM, Hermansen L, Rowell LB (1977) Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol 43:790–794

    PubMed  CAS  Google Scholar 

  • Charkoudian N, Johnson JM (1999) Reflex control of cutaneous vasoconstrictor system is reset by exogenous female reproductive hormones. J Appl Physiol 87:381–385

    PubMed  CAS  Google Scholar 

  • Charkoudian N, Stephens DP, Pirkle KC, Kosiba WA, Johnson JM (1999) Influence of female reproductive hormones on local thermal control of skin blood flow. J Appl Physiol 87:1719–1723

    PubMed  CAS  Google Scholar 

  • Cooper KE, Edholm OG, Mottram RF (1955) The blood flow in skin and muscle of the human forearm. J Physiol 128:258–267

    PubMed  CAS  Google Scholar 

  • Detry J-MR, Brengelmann GL, Rowell LB, Wyss C (1972) Skin and muscle components of forearm blood flow in directly heated man. J Appl Physiol 32:506–511

    PubMed  CAS  Google Scholar 

  • Edholm OG, Fox RH, Macpherson RK (1956) The effect of body heating on the circulation in skin and muscle. J Physiol 134:612–619

    PubMed  CAS  Google Scholar 

  • Hewlett AW, van Zwaluwenburg JG (1909) The rate of blood flow in the arm. Heart 1:631–646

    Google Scholar 

  • Hodges GJ, Kosiba WA, Zhao K, Alvarez GE, Johnson JM (2006) The involvement of nitric oxide in the cutaneous vasoconstrictor response to local cooling in humans. J Physiol 574:849–857

    Article  PubMed  CAS  Google Scholar 

  • Hodges GJ, Zhao K, Kosiba WA, Alvarez GE, Johnson JM (2007) The role of baseline in the cutaneous vasoconstrictor responses during combined local and whole body cooling in humans. Am J Physiol Heart Circ Physiol 293:H3187–H3192

    Article  PubMed  CAS  Google Scholar 

  • Johnson JM (1979a) Responses of forearm blood flow to graded leg exercise in man. J Appl Physiol 46:457–462

    PubMed  CAS  Google Scholar 

  • Johnson JM (1986) Nonthermoregulatory control of human skin blood flow. J Appl Physiol 61:1613–1622

    PubMed  CAS  Google Scholar 

  • Johnson JM, Park MK (1979b) Reflex control of skin blood flow by skin temperature: role of core temperature. J Appl Physiol Respir Environ Exerc Physiol 47:1188–1193

    CAS  Google Scholar 

  • Johnson JM, Park MK (1981) Effect of upright exercise on threshold for cutaneous vasodilation and sweating. J Appl Physiol Respir Environ Exerc Physiol 50:814–818

    CAS  Google Scholar 

  • Johnson JM, Park MK (1982) Effect of heat stress on cutaneous vascular responses to the initiation of exercise. J Appl Physiol Respir Environ Exerc Physiol 53:744–749

    CAS  Google Scholar 

  • Johnson JM, Rowell LB (1975) Forearm skin and muscle vascular responses in prolonged leg exercise in man. J Appl Physiol 39:920–924

    PubMed  CAS  Google Scholar 

  • Johnson JM, Rowell LB, Brengelmann GL (1974) Modification of the skin blood flow–body temperature relationship by upright exercise. J Appl Physiol 37:880–886

    PubMed  CAS  Google Scholar 

  • Johnson JM,Taylor WF, Shepherd AP, Park MK (1984) Laser-Doppler measurement of skin blood flow: comparison with plethysmography. J Appl Physiol 56:786–803

    Google Scholar 

  • Johnson JM, Yen TC, Zhao Y, Kosiba WA (2005) Sympathetic, sensory, and nonneural contributions to the cutaneous vasoconstrictor response to local cooling. Am J Physiol 288(Heart Circ Physiol): H1573–H1579

    CAS  Google Scholar 

  • Kellogg DL, Johnson JM, Kosiba WA (1989) Selective abolition of adrenergic vasoconstrictor responses in skin by local iontophoresis of bretylium. Am J Physiol 257 (Heart Circ Physiol):H11599–H1606

    Google Scholar 

  • Kellogg DL, Johnson JM, Kosiba WA (1991a) Control of internal temperature threshold for active vasodilation by dynamic exercise. J Appl Physiol 71:2476–2482

    PubMed  Google Scholar 

  • Kellogg DL, Johnson JM, Kosiba WA (1991b) Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am J Physiol 261(Heart Circ Phyiol):H1184–H1189

    PubMed  Google Scholar 

  • Kellogg DL, Johnson JM, Kenney WL, Pergola PE, Kosiba WA (1993) Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol 265(Heart Circ Physiol 34):H562–568

    PubMed  Google Scholar 

  • Kenney WL, Armstrong CG (1996) Reflex peripheral vasoconstriction is diminished in older men. J Appl Physiol 80:512–515

    PubMed  CAS  Google Scholar 

  • Kenny GP, Périard J, Journeay WS, Sigal RJ, Reardon FD (2003) Cutaneous active vasodilation in humans during passive heating postexercise. J Appl Physiol 95:1025–1031

    PubMed  Google Scholar 

  • Lindblad LR, Ekenvall L (1986a) Alpha adrenorecptors in vessels of human finger skin. Acta Physiol Scand 128:219–222

    Article  PubMed  CAS  Google Scholar 

  • Lindblad LR, Ekenvall L, Ancker K, rohman H, Oberg PA (1986b) Laser Doppler flow-meter assessment of iontophoretically applied norepinephrine on human finger skin circulation. J Invest Dermatol 87:634–636

    Article  PubMed  CAS  Google Scholar 

  • McGirr EM (1952) The rate of removal of radioactive sodium following injection into muscle and skin. Clin Sci 11:91–99

    PubMed  CAS  Google Scholar 

  • Nadel ER, Cafarelli E, Roberts M F, Wenger CB (1979) Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol Respir Environ Physiol 46:430–437

    CAS  Google Scholar 

  • Pérgola PE, Kellogg DL, Johnson JM, Kosiba WA (1994) Reflex control of active cutaneous vasodilation by skin temperature in humans. Am J Physiol 266(Heart Circ Physiol 35):H1979–H1984

    PubMed  Google Scholar 

  • Pérgola PE, Johnson JM, Kellogg D L, Kosiba WA (1996) Control of skin blood flow by whole body and local skin cooling in exercising humans. Am J Physiol 270(Heart Circ Physiol 39):H208–H215

    PubMed  Google Scholar 

  • Roddie IC, Shepherd JT, Whelan RF (1956) Evidence from venous oxygen saturation measurements that the increase in forearm blood flow during body heating is confined to the skin. J Physiol 134:444–450

    PubMed  CAS  Google Scholar 

  • Rowell LB (1986) Human circulation regulation during physical stress. Oxford University Press, New York

    Google Scholar 

  • Saumet JL, Kellogg Jr DL, Taylor WF, Johnson JM (1988) Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow. J Appl Physiol 65:478–481

    PubMed  CAS  Google Scholar 

  • Smolander J, Saalo J, Korhonen O (1991) Effect of work load on cutaneous vascular response to exercise. J Appl Physiol 71:1614–1619

    PubMed  CAS  Google Scholar 

  • Stephens DP, Aoki K, Kosiba WA, Johnson JM (2001) Nonnorandrenergic mechanism of reflex cutaneous vasoconstriction in men. Am J Physiol Heart Circ Physiol 280:H1496–H1504

    PubMed  CAS  Google Scholar 

  • Taylor WF, Johnson JM, O’Leary D, Park MK (1984) Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol Respir Environ Exercise Physiol 57:191–196

    CAS  Google Scholar 

  • Taylor WF, Johnson JM, Kosiba WA, Kwan CM (1988) Graded cutaneous vascular responses to dynamic leg exercise. J Appl Physiol 64:1803–1809

    PubMed  CAS  Google Scholar 

  • Taylor WF, Johnson JM, Kosiba WA (1990) Roles of absolute and relative load in skin vasoconstriction responses to exercise. J Appl Physiol 69:1131–1136

    PubMed  CAS  Google Scholar 

  • Thompson CS, Kenney WL (2004) Altered neurotransmitter control of reflex vasoconstriction in aged human skin. J Physiol 558:697–704

    Article  PubMed  CAS  Google Scholar 

  • Thompson CS, Holowatz LA, Kenney WL (2005) Attenuated noradrenergic sensitivity during local cooling in aged human skin. J Physiol 564.1:313–319

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Torgerson CS, Holowatz LA, Flavahan NA, Kenney WL (2006) Cold-induced cutaneous vasoconstriction is mediated by Rho kinase in vivo in human skin. Am J Physiol Heart Circ Physiol 292:H1700–H1705

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Torgerson CS, Holowatz LA, Flavahan NA, Kenney WL (2007) Rho kinase-mediated local cold-induced cutaneous vasoconstriction is augmented in aged human skin. Am J Physiol Heart Circ Physiol 293:H30–H36

    Article  PubMed  CAS  Google Scholar 

  • Wenger CB, Roberts M F, Stolwijk JAJ, Nadel ER (1975) Forearm blood flow during body temperature transients produced by leg exercise. J Appl Physiol 38:58–63

    PubMed  CAS  Google Scholar 

  • Wenger CB, Stephenson LA, Durkin MA (1986) Effect of nerve block on response of forearm blood flow to local temperature. J Appl Physiol 61:227–232

    PubMed  CAS  Google Scholar 

  • Wyss CR, Brengelmann GL, Johnson JM, Rowell LB, Niederberger M (1974) Control of skin blood flow, sweating heart rate: role of skin vs. core temperature. J Appl Physiol 36:726–733

    PubMed  CAS  Google Scholar 

  • Wyss CR, Brengelmann GL, Johnson JM, Rowell LB, Silverstein D (1975) Altered control of skin blood flow, at high skin and core temperatures. J Appl Physiol 38:839–845

    PubMed  CAS  Google Scholar 

  • Yamakazi F, Sone R, Zhao K, Alvarez GE, Kosiba WA, Johnson JM (2006) Rate dependency and role of nitric oxide in the vascular responses to direct cooling in human skin. J Appl Physiol 100:42–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the generous assistance offered by John M. Johnson whose prompt responses to a steady stream e-mail messages contained insightful comments that contributed greatly to the author’s understanding of skin blood flow. However, in spite of his valuable assistance in this study, Prof. Johnson bears no responsibility for errors the author may have made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene H. Wissler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wissler, E.H. A quantitative assessment of skin blood flow in humans. Eur J Appl Physiol 104, 145–157 (2008). https://doi.org/10.1007/s00421-008-0697-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0697-7

Keywords

Navigation