Skip to main content
Log in

Cardiac mechanisms underlying normal exercise tolerance: gender impact

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study is to test our hypothesis that normal exercise tolerance differs according to gender and to identify potential functional cardiac relationships, which could explain those differences. A total of 44 healthy individuals with mean age of 49 ± 12 years (28–74 years, 22 males) constituted the study cohort. All individuals underwent resting and exercise Doppler echocardiogram simultaneously with peak oxygen uptake analysis (pVO2). At equal pVO2, males achieved higher peak exercise workload (p < 0.001) and females higher heart rate (p < 0.001) but the two groups maintained similar indexed left ventricular (LV) stroke volume (SV) and cardiac output. Indexed LV end-diastolic (LVDVI) and end-systolic volumes (LVSVI) were smaller in females (p < 0.001 and p < 0.01, respectively), but filling time (FT) was shorter (p < 0.001) and they had higher early diastolic (E) velocity (p = 0.004), E/E m (myocardial E velocity) (p < 0.001) and global longitudinal strain rate atrial velocity (GLSRa′) (p = 0.02), compared to males. In males, workload (p < 0.01), LVDVI (p < 0.01), LVSVI (p < 0.05), SVI (p < 0.001) directly but LV myocardial isovolumic relaxation time (IVRTm) (p < 0.01) inversely correlated with pVO2. In females, mitral E velocity (p < 0.01), GLSRs′ (p < 0.05) positively and LVFT negatively (p < 0.05) correlated with pVO2. In a multivariable analysis SVI in males (p < 0.01) and GLSRs′ in females (p < 0.01) were the strongest predictors for pVO2. Thus, normal exercise capacity as determined by pVO2 is related to the indexed stroke volume in males and left atrial pressure in females. These native normal differences between genders may explain the known vulnerability of women to endurance exercise compared to men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aune E, Baekkevar M, Roislien J, Rodevand O, Otterstad JE (2009) Normal reference ranges for left and right atrial volume indexes and ejection fractions obtained with real-time three-dimensional echocardiography. Eur J Echocardiogr 10:738–744

    Article  PubMed  Google Scholar 

  • Bazett (1920) An analysis of the time-relations of electrocardiogram. Heart pp 353–370

  • Bella JN, Palmieri V, Kitzman DW, Liu JE, Oberman A, Hunt SC, Hopkins PN, Rao DC, Arnett DK, Devereux RB (2002) Gender difference in diastolic function in hypertension (the HyperGEN study). Am J Cardiol 89:1052–1056

    Article  PubMed  Google Scholar 

  • Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679

    Article  PubMed  Google Scholar 

  • Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3:588–595

    Article  PubMed  Google Scholar 

  • Burgess MI, Jenkins C, Sharman JE, Marwick TH (2006) Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 47:1891–1900

    Article  PubMed  Google Scholar 

  • Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Arheden H (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:2

    Article  PubMed  Google Scholar 

  • Dalen H, Thorstensen A, Vatten LJ, Aase SA, Stoylen A (2010) Reference values and distribution of conventional echocardiographic Doppler measures and longitudinal tissue Doppler velocities in a population free from cardiovascular disease. Circ Cardiovasc Imaging 3:614–622

    Article  PubMed  Google Scholar 

  • Granath A, Strandell T (1964) Relationships between cardiac output, stroke volume and intracardiac pressures at rest and during exercise in supine position and some anthropometric data in healthy old men. Acta Med Scand 176:447–466

    Article  PubMed  CAS  Google Scholar 

  • Hanel B, Law I, Mortensen J (2003) Maximal rowing has an acute effect on the blood-gas barrier in elite athletes. J Appl Physiol 95:1076–1082

    PubMed  Google Scholar 

  • Kjaergaard J, Sogaard P, Hassager C (2004) Right ventricular strain in pulmonary embolism by Doppler tissue echocardiography. J Am Soc Echocardiogr 17:1210–1212

    Article  PubMed  Google Scholar 

  • Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, Kalman J, Phillips RA, Steingart R, Brown EJ Jr, Berkowitz R, Moskowitz R, Soni A, Mancini D, Bijou R, Sehhat K, Varshneya N, Kukin M, Katz SD, Sleeper LA, Le Jemtel TH (2004) Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol 43:1432–1438

    Article  PubMed  Google Scholar 

  • Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  • Lindqvist P, Wikstrom G, Waldenstrom A (2008) The use of E/Em and the time interval difference of isovolumic relaxation (TIVRT-IVRTm) in estimating left ventricular filling pressures. Eur J Heart Fail 10:490–497

    Article  PubMed  Google Scholar 

  • Mitoff PR, Al-Hesayen A, Azevedo E, Newton GE, Mak S (2007) Sex differences in basal hemodynamics and left ventricular function in humans with and without heart failure. Am Heart J 154:575–580

    Article  PubMed  Google Scholar 

  • Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  • Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA (1992) Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 86:494–503

    PubMed  CAS  Google Scholar 

  • Plehn G, Vormbrock J, Perings C, Machnick S, Zuehlke C, Trappe HJ, Meissner A (2008) Loss of diastolic time as a mechanism of exercise-induced diastolic dysfunction in dilated cardiomyopathy. Am Heart J 155:1013–1019

    Article  PubMed  Google Scholar 

  • Plehn G, Vormbrock J, Meissner A, Trappe HJ (2009) Effects of exercise on the duration of diastole and on interventricular phase differences in patients with hypertrophic cardiomyopathy: relationship to cardiac output reserve. J Nucl Cardiol 16:233–243

    Article  PubMed  Google Scholar 

  • Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15:167–184

    Article  PubMed  Google Scholar 

  • Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    Article  PubMed  Google Scholar 

  • Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083

    PubMed  CAS  Google Scholar 

  • Schirmer H, Lunde P, Rasmussen K (2000) Mitral flow derived Doppler indices of left ventricular diastolic function in a general population; the Tromso study. Eur Heart J 21:1376–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Karin Holmström and Maria Backlund for supervising the oxygen consumption test and blood samples. This study was supported by The Swedish Heart and Lung Foundation, The Medical Faculty at Umeå University and The Heart Foundation of Northern Sweden.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lindqvist.

Additional information

Communicated by Niels H. Secher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindqvist, P., Mörner, S. & Henein, M.Y. Cardiac mechanisms underlying normal exercise tolerance: gender impact. Eur J Appl Physiol 112, 451–459 (2012). https://doi.org/10.1007/s00421-011-1992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1992-2

Keywords

Navigation