Skip to main content

Advertisement

Log in

Gravity, the hydrostatic indifference concept and the cardiovascular system

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Gravity, like any acceleration, causes a hydrostatic pressure gradient in fluid-filled bodily compartments. At a force of 1G, this pressure gradient amounts to 10 kPa/m. Postural changes alter the distribution of hydrostatic pressure patterns according to the body’s alignment to the acceleration field. At a certain location—referred to as hydrostatically indifferent—within any given fluid compartment, pressure remains constant during a given change of position relative to the acceleration force acting upon the body. At this specific location, there is probably little change in vessel volume, wall tension, and the balance of Starling forces after a positional manoeuvre. In terms of cardiac function, this is important because arterial and venous hydrostatic indifference locations determine postural cardiac preload and afterload changes. Baroreceptors pick up pressure signals that depend on their respective distance to hydrostatic indifference locations with any change of body position. Vascular shape, filling volume, and compliance, as well as temperature, nervous and endocrine factors, drugs, and time all influence hydrostatic indifference locations. This paper reviews the physiology of pressure gradients in the cardiovascular system that are operational in a gravitational/acceleration field, offers a broadened hydrostatic indifference concept, and discusses implications that are relevant in physiological and clinical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badeer HS, Hicks JW (1992) Hemodynamics of vascular ‘waterfall’: is the analogy justified. Respir Physiol 87:205–217

    Article  CAS  PubMed  Google Scholar 

  • Bjerkhoel P, Lindgren P, Lundvall J (1995) Protein loss and capillary protein permeability in dependent regions upon quiet standing. Acta Physiol Scand 154:311–320

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist CG, Stone HL (1983) Cardiovascular adjustments to gravitational stress. In: Shepherd JT, Abboud FM (eds) Handbook of physiology—the cardiovascular system 3: part II, Chap 28. American Physiological Society, Bethesda, MD, pp 1025–1063

  • Blumberg R (1885) Über den Einluss der Schwere auf Kreislauf und Atmung. Arch Ges Physiol 37:467

    Article  Google Scholar 

  • Broskey J, Sharp MK (2007) Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model. Ann Biomed Eng 35:1800–1811

    Article  PubMed  Google Scholar 

  • Buckner PS, Quail AW, Cottee BF, White SW (1999) Venous hydrostatic indifference point as a marker of postnatal adaptation to orthostasis in swine. J Appl Physiol 87:882–888

    CAS  PubMed  Google Scholar 

  • Cai Y, Boesen M, Stromstad M, Secher NH (2000) An electrical admittance based index of thoracic intracellular water during head-up tilt in humans. Eur J Appl Physiol 83:356–362

    Article  CAS  PubMed  Google Scholar 

  • Caiani EG, Weinert L, Takeuchi M, Veronesi F, Sugeng L, Corsi C, Capderou A, Cerutti S, Vaida P, Lang RM (2007) Evaluation of alterations on mitral annulus velocities, strain, and strain rates due to abrupt changes in preload elicited by parabolic flight. J Appl Physiol 103:80–87

    Article  CAS  PubMed  Google Scholar 

  • Clark JH, Hooker DR, Weed LH (1934) The hydrostatic factor in venous pressure measurements. Am J Physiol 109:166–177

    Google Scholar 

  • Crandall CG, Wilson TE, Marving J, Vogelsang TW, Kjaer A, Hesse B, Secher NH (2008) Effects of passive heating on central blood volume and ventricular dimensions in humans. J Physiol 586:293–301

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Durand S, Levine BD, Crandall CG (2005) Effect of skin surface cooling on central venous pressure during orthostatic challenge. Amer J Physiol 289:H2429–H2433

    CAS  Google Scholar 

  • Dawson EA, Secher NH, Dalsgaard MK, Ogoh S, Yoshiga CC, González-Alonso J, Steensberg A, Raven PB (2004) Standing up to the challenge of standing: a siphon does not support cerebral blood flow in humans. Am J Physiol 287:R911–R914

    CAS  Google Scholar 

  • Della Rocca G, Cecconi M, Costa MG (2008) Mini invasive hemodynamic monitoring: from arterial pressure to cardiac output. Signa Vitae 3(Suppl 1):7–9

    Google Scholar 

  • Edholm OG (1940) Effect of gravity on the blood pressure of the cat. J Physiol (Lond) 98:79–96

    CAS  Google Scholar 

  • Ehmke H (2010) Das Kreislaufsystem. In: Rainer Klinke et al (eds) Physiologie, Chap 6. Georg Thieme. Stuttgart, New York. ISBN 978-3-13-796006-5

  • El-Bedawi KM, Hainsworth R (1994) Combined head-up tilt and lower body suction: a test of orthostatic tolerance. Clin Auton Res 4:41–47

    Article  CAS  PubMed  Google Scholar 

  • Fortney SM, Schneider VS, Greenleaf JE (1996) The physiology of bed rest. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology—environmental physiology 2, Chap 39. Oxford University Press, NY, pp 889–939

  • Gauer OH, Henry JP (1964) Negative acceleration in relation to arterial oxygen saturation, subendocardial hemorrhage and venour pressure in the forehead. Aerosp Med 35:533–545

    CAS  PubMed  Google Scholar 

  • Gauer OH, Thron HL (1965) Postural changes in the circulation. In: Handbook of physiology—circulation III, Chap 67. American Physiological Society, Bethesda, MD, pp 2409–2439

  • Geelen G, Laitinen T, Hartikainen J, Länsimies E, Bergström K, Niskanen L (2002) Gender influence on vasoactive hormones at rest and during a 70° head-up tilt in healthy humans. J Appl Physiol 92:1401–1408

    CAS  PubMed  Google Scholar 

  • Gelman S (2008) Venous function and central venous pressure: a physiologic story. Anesthesiology 108:735–748

    Article  PubMed  Google Scholar 

  • Goswami N, Rössler A, Lackner HK, Schneditz D, Grasser E, Hinghofer-Szalkay H (2009) Heart rate and stroke volume response patterns to augmented orthostatic stress. Clin Auton Res 19:157–165

    Article  PubMed  Google Scholar 

  • Grasser EK, Goswami N, Rössler A, Vrecko K, Hinghofer-Szalkay H (2009) Hemodynamic and neurohormonal responses to extreme orthostatic stress in physically fit young adults. Acta Astronautica 64:688–696

    Article  Google Scholar 

  • Green NDC (2006) Effects of long-duration acceleration. In: Rainford DJ, Gradwell DP (eds) Ernsting’s aviation medicine, Chap 8, 4th edn. Oxford University Press, New York. ISBN 10-0-340-81319-9

  • Greenway CV (1984) Neural control and autoregulatory escape. In: Shepherd AP, Granger DN (eds) Physiology of the intestinal circulation, Chap 5. Raven Press, NY, pp 61–71

  • Grissmer S (2010) Blutkreislauf. In: Jan C Behrends et al (eds) Physiologie, Chap 5. MLP Duale Reihe, Georg Thieme, Stutgart. ISBN 978-3-138447-9

  • Groothuis JT, Poelkens F, Wouters CW, Kooijman M, Hopman MTE (2008) Leg intravenous pressure during head-up tilt. J Appl Physiol 105:811–815

    Article  PubMed  Google Scholar 

  • Grubb BP, Kanjwal Y, Karabin B, Imran N (2008) Orthostatic hypotension and autonomic failure: a concise guide to diagnosis and management. Clin Med Cardiol 2:279–291

    Google Scholar 

  • Guyton AC, Greganti FP (1956) A physiologic reference point for measuring circulatory pressures in the dog, particularly venous pressure. Am J Physiol 185:137–141

    CAS  PubMed  Google Scholar 

  • Haase EB, Shoukas AA (1992) Blood volume changes in microcirculation of rat intestine caused by carotid sinus baroreceptor reflex. Am J Physiol 263:H1939–H1945

    CAS  PubMed  Google Scholar 

  • Hagan RD, Diaz FJ, Horvath SM (1978) Plasma volume changes with movement to supine and standing positions. J Appl Physiol 45:414–418

    CAS  PubMed  Google Scholar 

  • Han WQ, Hu WD, Dong MQ, Fu ZJ, Wen ZH, Cheng HW, Ma J, Ma RS (2009) Cerebral hemodynamics and brain functional activity during lower body negative pressure. Aviat Space Environ Med 80:698–702

    Article  PubMed  Google Scholar 

  • Harrison MH (1985) Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 65:149–209

    CAS  PubMed  Google Scholar 

  • Hermann, Blumberg, Wagner (1886) Plügers Arch 39:371 (cf. Gauer and Thron 1965)

  • Hill L (1895) The influence of the force of gravity on the circulation of the blood. I. J Physiol (Lond) 18:15–53

    CAS  Google Scholar 

  • Hill L, Barnard H (1897) The influence of the force of gravity on the circulation of the blood. II. J Physiol (Lond) 21:323–352

    CAS  Google Scholar 

  • Hinghofer-Szalkay H (1982) Tilt table and related studies. In: ESA SP-180, European Space Agency (Paris), pp 81–102

  • Hinghofer-Szalkay H (1986) Method of high-precision micro-sample blood and plasma mass densitometry. J Appl Physiol 60:1082–1088

    CAS  PubMed  Google Scholar 

  • Hinghofer-Szalkay H, Greenleaf JE (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63:1003–1007

    CAS  PubMed  Google Scholar 

  • Hinghofer-Szalkay H, Sauseng-Fellegger G, Greenleaf JE (1995) Plasma volume with alternating tilting: effect of fluid filtration. J Appl Physiol 78:1369–1373

    CAS  PubMed  Google Scholar 

  • Hinghofer-Szalkay HG, Vigas M, Sauseng-Fellegger G, König EM, Jezova D (1996) Head-up tilt and lower body suction: comparison of hormone responses in healthy men. Physiol Res 45:369–378

    CAS  PubMed  Google Scholar 

  • Hinghofer-Szalkay HG, Rössler A, Evans JM, Stenger MB, Moore FB, Knapp CF (2006) Circulatory galanin levels increase severalfold at presyncope in healthy humans. J Appl Physiol 100:844–849

    Article  CAS  PubMed  Google Scholar 

  • Hinghofer-Szalkay HG, Goswami N, Rössler A, Grasser E, Schneditz D (2008) Reactive hyperemia in the human liver. Am J Physiol Gastrointest Liver Physiol 295:332–337

    Article  Google Scholar 

  • Jacob G, Ertl AC, Shannon JR, Furlan R, Robertson RM, Robertson D (1998) Effect of standing on neurohumoral responses and plasma volume in healthy subjects. J Appl Physiol 84:914–921

    CAS  PubMed  Google Scholar 

  • Jarvis SS, Pawelczyk JA (2009) Identification of the human electrical impedance indifferent point: a surrogate for the volume indifferent point. Eur J Appl Physiol 107:473–480

    Article  PubMed  Google Scholar 

  • Jorfeldt L, Vedung T, Forsstrom E, Henriksson J (2003) Influence of leg position and environmental temperature on segmental volume expansion during venous occlusion plethysmography. Clin Sci 104:599–605

    Article  PubMed  Google Scholar 

  • Kamegai M, Kristensen MS, Warberg J, Norsk P (1992) Carotid baroreflexes and plasma vasopressin in humans during head-up tilt. Am J Physiol 263:R318–R323

    CAS  PubMed  Google Scholar 

  • Kidd BSL, Lyons SM (1958) The distensibility of the blood vessels of the human calf determined by graded venous congestion. J Physiol (Lond) 140:122–128

    CAS  Google Scholar 

  • Kirsch KA, Merke J, Hinghofer-Szalkay H (1980) Fluid volume distribution within superficial shell tissues along body axis during changes of body posture in man. The application of a new miniature plethysmographic method. Pflügers Arch 383:195–201

    Article  CAS  PubMed  Google Scholar 

  • Kirsch KA, Röcker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984) Venous pressure in man during weightlessness. Science 225:218–219

    Article  CAS  PubMed  Google Scholar 

  • Laszlo Z, Rössler A, Hinghofer-Szalkay HG (2001) Cardiovascular and humoral readjustment after different levels of head-up tilt in humans. Aviat Space Environ Med 72:193–202

    CAS  PubMed  Google Scholar 

  • Levick JR, Michel CC (1978) The effects of position and skin temperature on the capillary pressure in the fingers and toes. J Physiol Lond 274:97–109

    CAS  PubMed  Google Scholar 

  • Liebenschütz F, Henneberg U, Thron HL (1976) Central venous pressure and blood circulation in orthostatic by changes of the total blood volume in postoperative patients. Anaesthesist 25:425–430

    PubMed  Google Scholar 

  • Lozano-Nieto A, Turner AA (2001) Effects of orthostatic fluid shifts on bioelectrical impedance measurements. Biomed Instrum Technol 35:249–258

    CAS  PubMed  Google Scholar 

  • Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part II: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44:698–705

    Article  CAS  PubMed  Google Scholar 

  • Matzen S, Knigge U, Schütten HJ, Warberg J, Secher NH (1990) Atrial natriuretic peptide during head-up tilt induced hypovolaemic shock in man. Acta Physiol Scand 140:161–166

    Article  CAS  PubMed  Google Scholar 

  • Matzen S, Perko G, Groth S, Friedman DB, Secher NH (1991) Blood volume distribution during head-up tilt induced central hypovolaemia in man. Clin Physiol 11:411–422

    Article  CAS  PubMed  Google Scholar 

  • Matzen S, Emmeluth C, Milliken MC, Secher NH (1992) Plasma endothelin-1 during central hypovolaemia in man. Clin Physiol 112:653–658

    Article  Google Scholar 

  • Montmerle S, Sundblad P, Linnarsson D (2005) Residual heterogeneity of intra- and interregional pulmonary perfusion in short-term microgravity. J Appl Physiol 98:2268–2277

    Article  PubMed  Google Scholar 

  • Neto JE (2006) Great arteries contribution in orthostatic cardiovascular adaptation. Arquivos BrasilCardiol 87: No 2

  • Ogoh S, Yoshiga CC, Secher NH, Raven PB (2006) Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans. J Physiol Sci 56:227–233

    Article  PubMed  Google Scholar 

  • Olszewski WL, Engeset A, Sokolowski J (1977) Lymph flow in the normal male leg during lying, getting up, and walking. Lymphology 10:178–183

    CAS  PubMed  Google Scholar 

  • Pang CCY (2001) Autonomic control of the venous system in health and disease. Effects of drugs. Pharmacol Ther 90:179–230

    Article  CAS  PubMed  Google Scholar 

  • Patterson JL Jr, Warren JV (1952) Mechanisms of adjustment in the cerebral circulation upon assumption of the upright position. J Clin Invest 31:653

    Google Scholar 

  • Perko G, Payne G, Secher NH (1993) An indifference point for electrical impedance in humans. Acta Physiol Scand 148:125–129

    Article  CAS  PubMed  Google Scholar 

  • Perko G, Payne G, Linkis P, Jorgensen LG, Landow L, Warberg J, Secher NH (1994) Thoracic impedance and pulmonary arterial natriuretic peptide during head-up tilt induced hypovolaemic shock in humans. Acta Physiol Scand 1994:449–454

    Article  Google Scholar 

  • Perko G, Tilgreen R, Secher NH (1995) The venous pump does not affect the indifference point for electrical impedance in humans. Eur J Appl Physiol 72:179–182

    Article  CAS  Google Scholar 

  • Perko MJ, Madsen P, Perko G, Schroeder TV, Secher NH (1999) Cholinergic induced mesenteric vasorelaxation in response to head-up tilt. Acta Physiol Scand 166:279–284

    Article  CAS  PubMed  Google Scholar 

  • Perl W (1975) Convection and permeation of albumin between plasma and interstitium. Microvasc Res 10:83–94

    Article  CAS  PubMed  Google Scholar 

  • Petersen M (2010). Herz-Kreislauf-system. In: Michael Gekle et al (eds) Taschenlehrbuch Physiologie, Chap 6. Georg Thieme, Stutgart. ISBN 978-3-13-144981-8

  • Price HL, Deutsch S, Marshall BE, Stephen GW, Behar MG, Neufeld GR (1966) Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ Res 18:469–474

    CAS  PubMed  Google Scholar 

  • Prisk GK, Guy HJB, Elliott AR, West JB (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76:1730–1738

    CAS  PubMed  Google Scholar 

  • Renkin EM, Crone C (1996) Microcirculation and capillary exchange. Comprehensive human physiology: from cellular mechanisms to integration, vols 1, 2. Springer, Berlin, pp 1965–1979

  • Rohdin M, Petersson J, Mure M, Glenny RW, Lindahl SGE, Linnarsson D (2003) Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. J Appl Physiol 95:3–10

    CAS  PubMed  Google Scholar 

  • Rössler A, László Z, Haditsch B, Hinghofer-Szalkay HG (1999) Effect of postural changes on adrenomedullin plasma levels in humans. Hypertension 34:1147–1151

    PubMed  Google Scholar 

  • Rowell LB (1993) Human cardiovascular control. Oxford University Press, Oxford. ISBN 0-19-507362-2

  • Rushmer RF (1947) A roentgenographic study of the effect of a pneumatic anti-blackout suit on the hydrostatic columns in man exposed to positive radial acceleration. Am J Physiol 151:459–468

    CAS  PubMed  Google Scholar 

  • Sander-Jensen K, Secher NH, Astrup A, Christensen NJ, Giese J, Schwartz TW, Warberg J, Bie P (1986) Hypotension induced by passive head-up tilt: endocrine and circulatory mechanisms. Am J Physiol 251:R742–R748

    CAS  PubMed  Google Scholar 

  • Scharfetter H, Brunner P, Mayer M, Brandstätter B, Hinghofer-Szalkay H (2005) Fat and hydration monitoring by abdominal bioimpedance analysis: data interpretation by hierarchical electrical modeling. IEEE Trans BME 52:975–978

    Article  Google Scholar 

  • Segal KR, Burastero S, Chun A, Coronel P, Pierson RN Jr, Wang J (1991) Estimation of extracellular and total body water by multiple frequency bioelectrical-impedance measurement. Am J Clin Nutr 54:6–9

    Google Scholar 

  • Seymour RS, Hargens AR, Pedley TJ (1993) The heart works against gravity. Am J Physiol 265:R715–R720

    CAS  PubMed  Google Scholar 

  • Sjöstrand T (1953) Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 33:202–228

    PubMed  Google Scholar 

  • Sjöstrand T (1976) Regulation of blood volume. Scand J Clin Lab Invest 36:209–221

    PubMed  Google Scholar 

  • Smit AAJ, Wieling W, Fujimura J, Denq JC, Opfer-Gehrking TL, Akarriou M, Karemaker JM, Low P (2004) Use of lower abdominal compression to combat orthostatic hypotension in patients with autonomic dysfunction. Clin Auton Res 14:165–175

    Article  Google Scholar 

  • Smith JJ, Ebert TJ (1990) General response to orthostatic stress. In: Smith JJ (ed) Circulatory response to the upright posture. CRC Press, Boca Raton, pp 1–46

    Google Scholar 

  • Smith EE, Guyton AC (1963) Center of arterial pressure regulation during rotation of normal and abnormal dogs. Am J Physiol 204:979

    CAS  PubMed  Google Scholar 

  • Spallone V, Uccioli L, Menzinger G (1995) Diabetic autonomic neuropathy. Diabet Metab Rev 11:227–257

    Article  CAS  Google Scholar 

  • Stewart JM, Medow MS, Glover JL, Montgomery LD (2006) Persistent splanchnic hyperemia during upright tilt in postural tachycardia syndrome. Am J Physiol 290:H665–H673

    CAS  Google Scholar 

  • Stocks JM, Taylor NAS, Tipton MJ, Greenleaf JE (2004) Human physiological responses to cold exposure. Aviat Space Environ Med 75:444–457

    PubMed  Google Scholar 

  • Streeten DHP, Anderson GH (1996) Mechanisms of orthostatic hypotension and tachycardia in patients with pheochromocytoma. Am J Hypertens 9:760–769

    Article  CAS  PubMed  Google Scholar 

  • Sundkvist G, Almér LO, Lilja B (1981) A sensitive orthostatic test in tilt table, useful in the detection of diabetic autonomic neuropathy. Acta Med Scand Suppl 656:43–45

    CAS  PubMed  Google Scholar 

  • Thompson WO, Thompson PK, Dailey ME (1928) The effect of posture upon the composition and volume of blood in man. J Clin Invest 5:573–604

    Article  CAS  PubMed  Google Scholar 

  • Truijen J, Bungaard-Nielsen M, van Lieshout JJ (2010) A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress. Eur J Appl Physiol 109:141–157

    Google Scholar 

  • van Lieshout JJ, Wieling W, Karemaker JM, Secher NH (2003) Syncope, cerebral perfusion, and oxygenation. J Appl Physiol 94:833–848

    PubMed  Google Scholar 

  • Wagner E (1886) Fortgesetzte Untersuchungen über den Einfluss der Schwere auf den Kreislauf. Arch Ges Physiol 39:371–386

    Article  Google Scholar 

  • Weissler AM, McCraw BH, Warren JV (1959) Pulmonary blood volume determined by a radioactive tracer technique. J Appl Physiol 14:531–534

    Google Scholar 

  • West JB (2010) Pulmonary physiology and pathophysiology: an integrated, case-based approach, 2nd edn. Lippincott, Williams and Wilkins, Baltimore, MD. ISBN 978-0-7817-6701-9

  • Westerhof BE, Gisolf J, Karemaker JM, Wesseling KH, Secher NH, van Lieshout JJ (2006) Time course analysis of baroreflex sensitivity during postural stress. Amer J Physiol 291:H2864–H2874

    CAS  Google Scholar 

  • Wilkins RW, Bradley SE, Friedland CK (1950) The acute circulatory effects of the head-won position (negative G) in normal man, with a note on some measures designed to relieve cranial congestion in this position. J Clin Invest 29:940–949

    Article  CAS  PubMed  Google Scholar 

  • Wissig SL, Charonig AS (1984) Capillary ultrastructure. In: Staub NC, Taylor AE (eds) Edema, Chap 6. Raven Press, NY, pp 117–142

  • Yndgaard S, Schifter S, Perko G, Matzen S, Secher NH (1991) Calcitonin gene-related peptide (CGRP) during head-up tilt in man. Acta Physiol Scand 143:129–130

    Article  CAS  PubMed  Google Scholar 

  • Zweifach BW (1973) Microcirculation. Ann Rev Physiol 35:117–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Hinghofer-Szalkay.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinghofer-Szalkay, H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur J Appl Physiol 111, 163–174 (2011). https://doi.org/10.1007/s00421-010-1646-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1646-9

Keywords

Navigation