Skip to main content
Log in

Increased oxidative stress status in rat serum after five minutes treadmill exercise

  • Research Article
  • Published:
Central European Journal of Medicine

Abstract

Although it is accepted that an important correlation exists between the physical exercise and the oxidative stress status, the data regarding the levels of the main oxidative stress markers after physical training have been difficult to interpret and a subject of many controversies. There are also very few studies regarding the effects of short-time exercise on the oxidative stress status modifications. Thus, in the present report we were interested in studying the modifications of some oxidative stress markers (two antioxidant enzymes-superoxide dismutase and glutathione peroxidase, a lipid peroxidation parameter — malondyaldehide, the total antioxidant status and protein carbonyl levels), from the serum of rats that were subject to one bout of five minutes exercise on a treadmill, when compared to a control sedentary group. In this way, we observed a decrease of superoxide dismutase specific activity in the rats which performed the exercises. Still, no modifications of glutathione peroxidase specific activity were found between groups. In addition, increased levels of malondyaldehide and protein carbonyls were observed in the rats subjected to exercises. In conclusion, our data provides new evidence regarding the increase of the oxidative stress status, as a result of a 5-minutes bout of treadmill exercising in rats, expressed through a decrease in the SOD specific activity and the total antioxidant status and also an increase of the lipid peroxidation and protein oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sies H. Oxidative stress: oxidants and antioxidants. Experimental Physiology 1997; 82: 291–295

    CAS  PubMed  Google Scholar 

  2. Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol 1993; 75: 1081–1087

    CAS  PubMed  Google Scholar 

  3. Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731

    Article  CAS  PubMed  Google Scholar 

  4. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Barclay JK, Hansel M. Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 1991; 69: 279–284

    Article  CAS  PubMed  Google Scholar 

  6. Reid MB, Shoji T, Moody MR, Entman ML. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol 1992; 73: 1805–1809

    CAS  PubMed  Google Scholar 

  7. Ji LL. Antioxidants and Oxidative Stress in Exercise. Exp Biol Med 1999; 222: 283–292

    Article  CAS  Google Scholar 

  8. Leichtweis S, Leeuwenburgh C, Fiebig R, Parmelee D, Yu XX, Ji LL. Rigorous swim training deteriorates mitochondrial function in rat heart. Acta Physiol Scand 1997; 160: 139–148

    Article  CAS  PubMed  Google Scholar 

  9. Evelo CT, Palmen NG, Artur Y, Janssen GM. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol 1992; 64: 354–358

    Article  CAS  Google Scholar 

  10. Robertson JD, Maughan RJ, Duthie GG, Morrice PC. Increased blood antioxidant systems of runners in response to training. Clin Sci 1991; 80: 611–618

    CAS  PubMed  Google Scholar 

  11. Marin E, Kretzschmar M, Arokoski J, Hanninen O, Klinger W. Enzymes of glutathione synthesis in dog skeletal muscle and their response to training. Acta Physiol Scand 1993; 147: 369–373

    Article  CAS  PubMed  Google Scholar 

  12. Ohno H, Suzuki K, Fujii J, Yamashita H, Kizaki T, Oh-ishi S, Taniguchi N. Superoxide dismutases in exercise and disease. Exercise and Oxygen Toxicity 1994; 1: 127–161

    Google Scholar 

  13. Ji LL, Dillon D, Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol 1990; 258: 918–923

    Google Scholar 

  14. Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb R, Dudley G. Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am J Physiol 1994; 266: 375–380

    Google Scholar 

  15. Tiidus PM, Pushkarenko J, Houston ME. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am J Physiol 1996; 271: 832–836

    Google Scholar 

  16. Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993; 25: 225–231

    Article  CAS  PubMed  Google Scholar 

  17. Leeuwenburgh C, Ji LL. Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J Nutr 1996; 126: 1833–1843

    CAS  PubMed  Google Scholar 

  18. Leeuwenburgh C, Ji LL. Glutathione depletion in rested and exercised mice: Biochemical consequence and adaptation. Arch Biochem Biophys 1995; 316: 941–949

    Article  CAS  PubMed  Google Scholar 

  19. Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 1990; 68: 2337–2343

    CAS  PubMed  Google Scholar 

  20. Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease. J Physiol Biochem 2012; 68: 59–69

    Article  CAS  PubMed  Google Scholar 

  21. Ciobica A, Hritcu L, Nastasa V, Padurariu M, Bild W. Inhibition of central angiotensin converting enzyme exerts anxiolytic effects by decreasing brain oxidative stress. Journal of Medical Biochemistry 2011; 30: 109–114

    Article  CAS  Google Scholar 

  22. Gurzu C, Artenie V, Hritcu L, Ciobica A. Prenatal testosterone improves the spatial learning and memory by protein synthesis in different lobes of the brain in the male and female rat. Cent. Eur. J. Biol 2008; 3: 39–47

    Article  CAS  Google Scholar 

  23. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, ozone on pulmonary function and lipid peroxidation. J Appl Physiol 1978; 45: 927–932

    CAS  PubMed  Google Scholar 

  24. Kondo H, Miura M, Itokawa Y. Antioxidant enzyme systems in skeletal muscle atrophied by immobilization. Pflugers Arch 1993; 422: 404–406

    Article  CAS  PubMed  Google Scholar 

  25. Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: Adaptive response to training. J Appl Physiol 1988; 64: 1333–1336

    CAS  PubMed  Google Scholar 

  26. Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: Adaptive response to exercise. J Gerontol 1985; 40: 281–286

    Article  CAS  PubMed  Google Scholar 

  27. Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb R, Dudley G. Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am J Physiol 1994; 266: 375–380

    Google Scholar 

  28. Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: Response of glutathione and antioxidant enzyme systems. Am J Physiol 1994; 267: 439–445

    Google Scholar 

  29. Hollander J, Fiebig R, Gore M, Bejma J, Ohno H, Ji LL. Superoxide dismutase gene expression: Fiberspecific adaptation to endurance training. Am J Physiol 1999; 277: 856–862

    Google Scholar 

  30. Oh-Ishi S, Kizaki T, Nagaswa J, Izawa T, Komabayashi T, Nagata N, Suzuki K, Taniguchi N, Ohno H. Effects of endurance training on superoxide dismutase activity, content, and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol 1997; 24: 326–332

    Article  CAS  PubMed  Google Scholar 

  31. Ji LL, Fu RG. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 1992; 72: 549–554

    CAS  PubMed  Google Scholar 

  32. Sentürk UK, Gündüz F, Kuru O, Aktekin MR, Kipmen D, Yalçin O et al. Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. J Appl Physiol 2001; 91: 1999–2004

    PubMed  Google Scholar 

  33. Jackson MJ, Khassaf M, Vasilaki A, McArdle F, McArdle A. Vitamin E and the oxidative stress of exercise. Ann NY Acad Sci 2004; 1031: 158–168

    Article  CAS  PubMed  Google Scholar 

  34. Jackson MJ, Pye D, Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 2007; 102: 1664–1670

    Article  CAS  PubMed  Google Scholar 

  35. Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med 1990; 8: 9–13

    Article  CAS  PubMed  Google Scholar 

  36. Shindoh C, DiMarco A, Thomas A, Manubay P, Supinski G. Effect of N-acetylcysteine on diaphragm fatigue. J Appl Physiol 1990; 68: 2107–2113

    CAS  PubMed  Google Scholar 

  37. Powers SK, DeRuisseau KC, Quindry J, Hamilton KL. Dietary antioxidants and exercise. J Sports Sci 2004; 22: 81–94

    Article  PubMed  Google Scholar 

  38. Diaz PT, Costanza MJ, Wright VP, Julian MW, Diaz JA, Clanton TL. Dithiothreitol improves recovery from in vitro diaphragm fatigue. Med Sci Sports Exerc 1998; 30: 421–426

    Article  CAS  PubMed  Google Scholar 

  39. Khawli FA, Reid MB. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol 1994; 77: 317–324

    CAS  PubMed  Google Scholar 

  40. Yesilkaya A, Ertug Z, Yegin A, Melikoglu M, Baskurt OK. Deformability and oxidant stress in red blood cells under the influence of halothane and isoflurane anesthesia. Gen Pharmacol. 1998; 31: 33–36

    Article  CAS  PubMed  Google Scholar 

  41. Kotzampassi K, Kolios G, Manousou P, Kazamias P, Paramythiotis D, Papavramidis TS et al. Oxidative stress due to anesthesia and surgical trauma: importance of early enteral nutrition. Mol Nutr Food Res. 2009; 53: 770–779

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir Serban.

Additional information

These authors equally contributed to this work (as last and coordinating author).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofin, FP., Ciobica, A., Cojocaru, D. et al. Increased oxidative stress status in rat serum after five minutes treadmill exercise. cent.eur.j.med 9, 722–728 (2014). https://doi.org/10.2478/s11536-013-0329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11536-013-0329-4

Keywords

Navigation