Skip to main content

Advertisement

Log in

Aerobic power and peak power of elite America’s Cup sailors

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking (‘grinding’) is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO2peak and onset of blood lactate (OBLA), and anaerobic performance, torque–crank velocity and power–crank velocity relationships and therefore peak power (P max) and optimum crank-velocity (ωopt), of America’s Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO2peak was 4.7 ± 0.5 L/min (range 3.6–5.5 L/min) at a power output of 332 ± 44 W (range 235–425 W). OBLA occurred at a power output of 202 ± 31 W (61% of Wmax) and VO2 of 3.3 ± 0.4 L/min (71% of VO2peak). The torque–crank velocity relationship was linear for all participants (r = 0.9 ± 0.1). P max was 1,420 ± 37 W (range 1,192–1,617 W), and ωopt was 125 ± 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board ‘grinding’ may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernardi M, Quattrini FM, Rodio A et al (2007) Physiological characteristics of America’s Cup sailors. J Sports Sci 25:1141–1152. doi:10.1080/02640410701287172

    Article  PubMed  Google Scholar 

  • Bouhlel E, Chelly MS, Tabka Z et al (2007) Relationships between maximal anaerobic power of the arms and legs and javelin performance. J Sports Med Phys Fitness 47:141–146

    PubMed  CAS  Google Scholar 

  • Calbet JA, Holmberg HC, Rosdahl H et al (2005) Why do arms extract less oxygen than legs during exercise? Am J Physiol 289:R1448–R1458. doi:10.1152/ajpcell.00313.2005

    Article  CAS  Google Scholar 

  • Carson WG Jr (1989) Rehabilitation of the throwing shoulder. Clin Sports Med 8:657–689

    PubMed  Google Scholar 

  • Dorel S, Hautier CA, Rambaud O et al (2005) Torque and power–velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med 26:739–746. doi:10.1055/s-2004-830493

    Article  PubMed  CAS  Google Scholar 

  • Driss T, Vandewalle H, Monod H (1998) Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test. J Sports Med Phys Fitness 38:286–293

    PubMed  CAS  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH et al (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75:712–719

    PubMed  CAS  Google Scholar 

  • Gardner AS, Martin JC, Martin DT et al (2007) Maximal torque- and power–pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol 101:287–292. doi:10.1007/s00421-007-0498-4

    Article  PubMed  Google Scholar 

  • Goosey-Tolfrey V, Castle P, Webborn N et al (2006) Aerobic capacity and peak power output of elite quadriplegic games players. Br J Sports Med 40:684–687. doi:10.1136/bjsm.2006.026815

    Article  PubMed  CAS  Google Scholar 

  • Heck H, Mader A, Hess G et al (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6:117–130. doi:10.1055/s-2008-1025824

    Article  PubMed  CAS  Google Scholar 

  • Hicks AL, Martin KA, Ditor DS et al (2003) Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41:34–43. doi:10.1038/sj.sc.3101389

    Article  PubMed  CAS  Google Scholar 

  • Horswill CA, Miller JE, Scott JR et al (1992) Anaerobic and aerobic power in arms and legs of elite senior wrestlers. Int J Sports Med 13:558–561. doi:10.1055/s-2007-1024564

    Article  PubMed  CAS  Google Scholar 

  • Hubner-Wozniak E, Kosmol A, Lutoslawska G et al (2004) Anaerobic performance of arms and legs in male and female free style wrestlers. J Sci Med Sport/Sports Med Australia 7:473–480

    CAS  Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40:497–504. doi:10.1079/BJN19780152

    Article  PubMed  CAS  Google Scholar 

  • Jemni M, Sands WA, Friemel F et al (2006) Any effect of gymnastics training on upper-body and lower-body aerobic and power components in national and international male gymnasts? J Strength Cond Res/Natl Strength Cond Assoc 20:899–907

    Google Scholar 

  • Johnson MA, Polgar J, Weightman D et al (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  PubMed  CAS  Google Scholar 

  • Leicht AS, Sinclair WH, Spinks WL (2008) Effect of exercise mode on heart rate variability during steady state exercise. Eur J Appl Physiol 102:195–204

    Article  PubMed  Google Scholar 

  • Marfell-Jones M, Olds T, Stewart A et al (2006) International standards for anthropometric assessment, vol 1. Potchefstroom, South Africa

    Google Scholar 

  • Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 29:1505–1512. doi:10.1097/00005768-199711000-00018

    PubMed  CAS  Google Scholar 

  • Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    PubMed  CAS  Google Scholar 

  • Mujika I, Padilla S (2001) Physiological and performance characteristics of male professional road cyclists. Sports medicine (Auckland, NZ) 31:479–487

    Google Scholar 

  • Neville V (2008) America’s Cup Yacht racing is not just about the boat. Sport Exerc Sci March:26–27

  • Neville VJ, Molloy J, Brooks JH et al. (2006) Epidemiology of injuries and illnesses in America’s Cup yacht racing. Br J Sports Med 40:304–311 (discussion 311–302). doi:10.1136/bjsm.2005.021477

    Google Scholar 

  • Pearson S, Hume P, Slyfield D et al (2007) External work and peak power are reliable measures of ergometer grinding performance when tested under load, deck heel, and grinding direction conditions. Sports Biomech/Int Soc Biomech Sports 6:71–80

    Article  Google Scholar 

  • Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51:1175–1182

    PubMed  CAS  Google Scholar 

  • Schmid A, Huonker M, Aramendi JF et al (1998) Heart rate deflection compared to 4 mmol x l(-1) lactate threshold during incremental exercise and to lactate during steady-state exercise on an arm-cranking ergometer in paraplegic athletes. Eur J Appl Physiol Occup Physiol 78:177–182. doi:10.1007/s004210050404

    Article  PubMed  CAS  Google Scholar 

  • Secher NH, Ruberg-Larsen N, Binkhorst RA et al (1974) Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol 36:515–518

    PubMed  CAS  Google Scholar 

  • Siri WE (1961) Body composition from fluid space and density. In: Brozek J, Hanschel A (eds) Techniques for measuring body composition. National Academy of Science, Washington, DC, pp 223–244

    Google Scholar 

  • Sjodin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2:23–26. doi:10.1055/s-2008-1034579

    Article  PubMed  CAS  Google Scholar 

  • Smith PM, Price MJ, Doherty M (2001) The influence of crank rate on peak oxygen consumption during arm crank ergometry. J Sports Sci 19:955–960. doi:10.1080/026404101317108453

    Article  PubMed  CAS  Google Scholar 

  • Smith PM, Doherty M, Drake D et al (2004) The influence of step and ramp type protocols on the attainment of peak physiological responses during arm crank ergometry. Int J Sports Med 25:616–621. doi:10.1055/s-2004-817880

    Article  PubMed  CAS  Google Scholar 

  • Sprague RCt, Martin JC, Davidson CJ et al (2007) Force-velocity and power–velocity relationships during maximal short-term rowing ergometry. Med Sci Sports Exerc 39:358–364. doi:10.1249/01.mss.0000241653.37876.73

    Article  PubMed  Google Scholar 

  • Stenberg J, Astrand PO, Ekblom B et al (1967) Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 22:61–70

    PubMed  CAS  Google Scholar 

  • Tesch PA (1983) Physiological characteristics of elite kayak paddlers. Can J Appl Sport Sci 8:87–91

    PubMed  CAS  Google Scholar 

  • Turner DL, Hoppeler H, Claassen H et al (1997) Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 161:459–464. doi:10.1046/j.1365-201X.1997.00246.x

    Article  PubMed  CAS  Google Scholar 

  • Valent LJ, Dallmeijer AJ, Houdijk H et al (2008) Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil 89:1016–1022. doi:10.1016/j.apmr.2007.10.034

    Article  PubMed  Google Scholar 

  • van Someren KA, Oliver JE (2002) The efficacy of ergometry determined heart rates for flatwater kayak training. Int J Sports Med 23:28–32. doi:10.1055/s-2002-19268

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Francaux M, Johnson D et al (1997) Measurement of the power output during the acceleration phase of all-out arm cranking exercise. Int J Sports Med 18:600–606. doi:10.1055/s-2007-972688

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle H, Peres G, Sourabie B et al (1989) Force-velocity relationship and maximal anaerobic power during cranking exercise in young swimmers. Int J Sports Med 10:439–445. doi:10.1055/s-2007-1024940

    Article  PubMed  CAS  Google Scholar 

  • Vokac Z, Bell H, Bautz-Holter E et al (1975) Oxygen uptake/heart rate relationship in leg and arm exercise, sitting and standing. J Appl Physiol 39:54–59

    PubMed  CAS  Google Scholar 

  • Washburn RA, Seals DR (1983) Comparison of peak oxygen uptake in arm cranking. Eur J Appl Physiol Occup Physiol 51:3–6. doi:10.1007/BF00952531

    Article  PubMed  CAS  Google Scholar 

  • Westhoff TH, Schmidt S, Gross V et al (2008) The cardiovascular effects of upper-limb aerobic exercise in hypertensive patients. J Hypertens 26:1336–1342. doi:10.1097/HJH.0b013e3282ffac13

    Article  PubMed  CAS  Google Scholar 

  • Whiting P (2007) The 32nd America’s Cup: a simple guide. Wiley, Chichester

    Google Scholar 

  • Wilkie DR (1949) The relation between force and velocity in human muscle. J Physiol 110:249–280

    PubMed  CAS  Google Scholar 

  • Zagatto AM, Papoti M, Gobatto CA (2008) Anaerobic capacity may not be determined by critical power model in elite table tennis players. J Sports Sci Med 7:54–59

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Cristina Pérez Encinas and Dr. Luis del Moral Garcia for their assistance with the data collection, and to Dr. Massimo Massarini for his contributions to the study protocol.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon Neville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, V., Pain, M.T.G. & Folland, J.P. Aerobic power and peak power of elite America’s Cup sailors. Eur J Appl Physiol 106, 149–157 (2009). https://doi.org/10.1007/s00421-009-1002-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1002-0

Keywords

Navigation