Skip to main content

Advertisement

Log in

Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3–5 month-old mice lacking α2A- and α2C-adrenoceptors (α2A2CARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, α2A2CARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased α2A2CARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo MC, Melo RI, Del Nery E, Alves MF, Juliano MA, Casarini DE, Juliano L, Carmona AK (1999) Internally quenched fluorogenic substrates for angiotensin I-converting enzyme. J Hypertens 17:665–672. doi:10.1097/00004872-199917050-00010

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli R (2007) Exercise training in chronic heart failure: how to harmonize oxidative stress, sympathetic outflow, and angiotensin II. Circulation 115:3042–3044. doi:10.1161/CIRCULATIONAHA.107.709329

    Article  PubMed  Google Scholar 

  • Benvenuti LA, Freitas HF, Mansur AJ, Higuchi ML (2007) Myocyte diameter and fractional area of collagen are not associated with survival time of outpatients with idiopathic dilated cardiomyopathy: a study based on right ventricular endomyocardial biopsies. Int J Cardiol 116:279–280. doi:10.1016/j.ijcard.2006.02.031

    Article  PubMed  Google Scholar 

  • Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100:315–322. doi:10.1254/jphs.CPJ06001X

    Article  PubMed  CAS  Google Scholar 

  • Braith RW, Welsch MA, Feigenbaum MS, Kluess HA, Pepine CJ (1999) Neuroendocrine activation in heart failure is modified by endurance exercise training. J Am Coll Cardiol 34:1170–1175. doi:10.1016/S0735-1097(99)00339-3

    Article  PubMed  CAS  Google Scholar 

  • Brum PC, Kosek J, Patterson A, Bernstein D, Kobilka B (2002) Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. Am J Physiol Heart Circ Physiol 283:H1838–H1845

    PubMed  CAS  Google Scholar 

  • Domenighetti AA, Wang Q, Egger M, Richards SM, Pedrazzini T, Delbridge LM (2005) Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 46:426–432. doi:10.1161/01.HYP.0000173069.53699.d9

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlof B, Deanfield J, Diez J, Drexler H, Ferrari R, van Gilst W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E, Luscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W, Ruilope L, Ruzicka M, Schunkert H, Swedberg K, Unger T, Vaughan D, Weber M (2001) The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am J Cardiol 88:1L–20L. doi:10.1016/S0002-9149(01)01878-1

    Article  PubMed  CAS  Google Scholar 

  • Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL (2005) Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 289:H2030–H2038. doi:10.1152/ajpheart.00526.2005

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, Krieger JE, Brum PC (2007a) The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 294(1):R26–R32. doi:10.1152/ajpregu.00424.2007

    PubMed  Google Scholar 

  • Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC (2007b) Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 34:760–765. doi:10.1111/j.1440-1681.2007.04635.x

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith SR (2004) Interactions between the sympathetic nervous system and the RAAS in heart failure. Curr Heart Fail Rep 1:45–50. doi:10.1007/s11897-004-0024-5

    Article  PubMed  Google Scholar 

  • Graciano ML, Cavaglieri Rde C, Delle H, Dominguez WV, Casarini DE, Malheiros DM, Noronha IL (2004) Intrarenal renin-angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J Am Soc Nephrol 15:1805–1815. doi:10.1097/01.ASN.0000131528.00773.A9

    Article  PubMed  CAS  Google Scholar 

  • Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Pozzi M, Morganti A, Carugo S, Mancia G (1997) Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation 96:1173–1179

    PubMed  CAS  Google Scholar 

  • Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 292:H736–H742. doi:10.1152/ajpheart.00937.2006

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann S (2005) Cardiac-specific overexpression of angiotensin II type 1 receptor in transgenic rats. Methods Mol Med 112:389–403

    PubMed  CAS  Google Scholar 

  • Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM, Buikema H, van Gilst WH, Lindschau C, Paul M, Inagami T, Ganten D, Urata H (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy. J Mol Med 79:601–608. doi:10.1007/s001090100246

    Article  PubMed  CAS  Google Scholar 

  • Johns C, Gavras I, Handy DE, Salomao A, Gavras H (1996) Models of experimental hypertension in mice. Hypertension 28:1064–1069

    PubMed  CAS  Google Scholar 

  • Jonsdottir S, Andersen KK, Sigurosson AF, Sigurosson SB (2006) The effect of physical training in chronic heart failure. Eur J Heart Fail 8:97–101. doi:10.1016/j.ejheart.2005.05.002

    Article  PubMed  Google Scholar 

  • Kemi OJ, Hoydal MA, Haram PM, Garnier A, Fortin D, Ventura-Clapier R, Ellingsen O (2007) Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovasc Res 76:91–99. doi:10.1016/j.cardiores.2007.06.008

    Article  PubMed  CAS  Google Scholar 

  • Leenen FH, White R, Yuan B (2001) Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system. Am J Physiol Heart Circ Physiol 281:H2410–H2416

    PubMed  CAS  Google Scholar 

  • Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJ, Boomsma F, van Gilst WH (2002) Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550. doi:10.1161/01.CIR.0000013847.07035.B9

    Article  PubMed  CAS  Google Scholar 

  • Mancia G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Grassi G (2006) Angiotensin-sympathetic system interactions in cardiovascular and metabolic disease. J Hypertens Suppl 24:S51–S56

    Article  PubMed  CAS  Google Scholar 

  • Mann DL, Kent RL, Parsons B, Cooper G 4th (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    Google Scholar 

  • Medeiro A, Vanzelli AS, Rosa KT, Irigoyen MC, Brum PC (2008) Effect of exercise training and carvedilol treatment on cardiac function and structure in mice with sympathetic hyperactivity-induced heart failure. Braz J Med Biol Res 41:812–817. doi:10.1590/S0100-879X2008000900012

    Article  PubMed  CAS  Google Scholar 

  • Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, Brum PC (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–119

    Article  PubMed  CAS  Google Scholar 

  • Mendes AC, Ferreira AJ, Pinheiro SV, Santos RA (2005) Chronic infusion of angiotensin-(1–7) reduces heart angiotensin II levels in rats. Regul Pept 125:29–34. doi:10.1016/j.regpep.2004.07.023

    Article  PubMed  CAS  Google Scholar 

  • Nagano M, Higaki J, Nakamura F, Higashimori K, Nagano N, Mikami H, Ogihara T (1992) Role of cardiac angiotensin II in isoproterenol-induced left ventricular hypertrophy. Hypertension 19:708–712

    PubMed  CAS  Google Scholar 

  • Negrao CE, Middlekauff HR (2007) Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 13(1):51–60. doi:10.1007/s10741-007-9057-7

    Article  Google Scholar 

  • Powers SK, Lennon SL, Quindry J, Mehta JL (2002) Exercise and cardioprotection. Curr Opin Cardiol 17:495–502. doi:10.1097/00001573-200209000-00009

    Article  PubMed  Google Scholar 

  • Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, Aneas I, Negrao CE, Krieger JE, Oliveira EM (2007) Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol 293:H3575–H3583. doi:10.1152/ajpheart.01251.2006

    Article  PubMed  CAS  Google Scholar 

  • Rolim NP, Medeiros A, Rosa KT, Mattos KC, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, Brum PC (2007) Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure. Physiol Genomics 29:246–252. doi:10.1152/physiolgenomics.00188.2006

    Article  PubMed  CAS  Google Scholar 

  • Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, Barretto AC, Krieger EM, Negrao CE (2003) The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol 42:854–860. doi:10.1016/S0735-1097(03)00831-3

    Article  PubMed  Google Scholar 

  • Tavernarakis N (2007) Cardiomyocyte necrosis: alternative mechanisms, effective interventions. Biochim Biophys Acta 1773:480–482. doi:10.1016/j.bbamcr.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Wan W, Powers AS, Li J, Ji L, Erikson JM, Zhang JQ (2007) Effect of post-myocardial infarction exercise training on the renin-angiotensin-aldosterone system and cardiac function. Am J Med Sci 334:265–273. doi:10.1097/MAJ.0b013e318068b5ed

    Article  PubMed  Google Scholar 

  • Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041

    Article  PubMed  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506. doi:10.1038/ncb1137

    Article  PubMed  CAS  Google Scholar 

  • Zucker IH (2006) Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 48:1005–1011. doi:10.1161/01.HYP.0000246614.47231.25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo, São Paulo—SP (FAPESP # 2005/59740-7) for funding this present investigation. We also want to express our gratitude to Fundação Zerbini, São Paulo—SP, for the support in this study. M.G.P. holds scholarship from FAPESP (# 2006/57164-1). P.C.B. holds scholarship from Conselho Nacional de Pesquisa e Desenvolvimento—Brasil (CNPq, BPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Chakur Brum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, M.G., Ferreira, J.C.B., Bueno, C.R. et al. Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Eur J Appl Physiol 105, 843–850 (2009). https://doi.org/10.1007/s00421-008-0967-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0967-4

Keywords

Navigation