Skip to main content
Log in

Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Three groups of sedentary male rats were exposed to intermittent hypobaric hypoxia (IHH) for 22 days (4 h/day, 5 days/week) in a hypobaric chamber at a simulated altitude of 5,000 m. Tibialis anterior (TA) and diaphragm (DG) were removed at the end of the programme (H group), and 20 or 40 days later (P20 and P40 groups). A control group (C) was maintained at sea-level pressure and their TA and DG were compared to those of the experimental rats at the end of the IHH programme, and also 20 and 40 days later. We measured the fibre morphometry and capillaries of each muscle. Our results demonstrate that IHH does not change the fibre type composition (with reference to either their contractile or oxidative properties) for most muscle regions of the muscles analysed analysed. We found few significant differences in muscle capillarity and fibre morphometry for TA after IHH. However, IHH did induce some statistically significant changes in DG: capillary density of the H rats (736 capillaries/mm2) increased compared to C animals (610 capillaries/mm2). Although IHH did not change the fibre capillarization or morphometric parameters of fast fibre types, we observed reductions ranging from 7 to 13% in fibre area, perimeter and diffusion distances between C and H for slow fibres. Moreover, these morphometric changes accounted for increases of 10–20% in capillarization, fibre unit area and fibre unit perimeter. This indicates that SO fibres are more sensitive to IHH than both fast fibre types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelmalki A, Fimbel S, Mayet Sornay MH, Sempore B, Favier R (1996) Aerobic capacity and skeletal muscle properties of normoxic and hypoxic rats in response to training. Pflugers Arch 431:671–679

    Article  PubMed  CAS  Google Scholar 

  • Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21:51–55

    PubMed  CAS  Google Scholar 

  • Bender PR, Tucker A, Twietmeyer TA (1984) Skeletal-muscle capillarity during recovery from chronic hypoxic exposure. Microcirc Endothelium Lymphatics 1:71–85

    PubMed  CAS  Google Scholar 

  • Bigard AX, Brunet A, Guezennec CY, Monod H (1991) Skeletal-muscle changes after endurance training at high-altitude. J Appl Physiol 71:2114–2121

    PubMed  CAS  Google Scholar 

  • Boyer SJ , Blume FD (1984) Weight loss and changes in body composition at high altitude. J Appl Physiol 57:1580–1585

    PubMed  CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    PubMed  CAS  Google Scholar 

  • Casas M, Casas H, Pagés T, Rama R, Ricart A, Ventura JL, Ibañez J, Rodríguez F, Viscor G (2000a) Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat Space Environm Med 71(2):125–130

    CAS  Google Scholar 

  • Casas H, Casas M, Ricart A, Rama R, Ibáñez J, Palacios L, Rodriguez FA, Ventura JL, Viscor G, Pages T (2000b) Effectiveness of three short intermittent hypobaric hypoxia protocols: hematological responses. J Exerc Physiol On line 3:38–45

    Google Scholar 

  • Cassin S, Gilbert RD, Bunnell CE, Johnson EM (1971) Capillary development during exposure to chronic hypoxia. Am J Physiol 220:448–451

    PubMed  CAS  Google Scholar 

  • Clanton TL, Klawitter PF (2001) Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. J Appl Physiol 90:2476–2487

    PubMed  CAS  Google Scholar 

  • Desplanches D, Hoppeler H, Linossier MT, Denis C, Claassen H, Dormois D, Lacour JR, Geyssant A (1993) Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Archiv 425:263–267

    Article  PubMed  CAS  Google Scholar 

  • De Troyer A, Estenne M (1988) Functional anatomy of the respiratory muscles. Clin Chest Med 9:175–193

    PubMed  Google Scholar 

  • Desplanches D, Hoppeler H, Tuscher L, Mayet MH, Spielvogel H, Ferretti G, Kayser B, Leuenberger M, Grunenfelder A, Favier R (1996) Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia. J Appl Physiol 81:1946–1951

    PubMed  CAS  Google Scholar 

  • Desplanches D (1997) Structural and functional adaptations of skeletal muscle to weightlessness. Int J Sports Med 18:S259–S264

    Article  PubMed  Google Scholar 

  • Deveci D, Marshall JM, Egginton S (2001) Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol 281:H241–H252

    CAS  Google Scholar 

  • Deveci D, Marshall JM, Egginton S (2002) Chronic hypoxia induces prolonged angiogenesis in skeletal muscles of rat. Exp Physiol 87:287–291

    Article  PubMed  CAS  Google Scholar 

  • Dubowitz V (1985) Muscle Biopsy: a Practical Approach. Bailliere Tindall, London

    Google Scholar 

  • Eby SH, Banchero N (1976) Capillary density of skeletal muscle in Andean dogs. Proc Soc Exp Biol Med 151:795–798

    PubMed  CAS  Google Scholar 

  • Fouces V, Torrella JR, Palomeque J, Viscor G (1993) A histochemical ATPase method for the demonstration of the muscle capillary network. J Histochem Cytochem 41:283–289

    PubMed  CAS  Google Scholar 

  • Green HJ, Reichmann H, Pette D (1984) Inter- and intraspecies comparisons of fibre type distribution and succinate dehydrogenase activity in type I, IIA and IIB fibres of mammalian diaphragms. Histochemistry 81:67–73

    Article  PubMed  CAS  Google Scholar 

  • Greene EC (1959) The Anatomy of the Rat. Trans Am Philosoph Soc 27

  • Ishihara A, Itoh K, Oishi Y, Itoh M, Hirofuji C, Hayashi H (1995) Effects of hypobaric hypoxia on histochemical fiber-type composition and myosin heavy-chain isoform component in the rat soleus muscle. Pflugers Archiv 429:601–606

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Moritani T, Ishida K, Hirofuji C, Taguchi S, Itoh M (1990) Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. Eur J Appl Physiol Occup Physiol 60:331–336

    Article  PubMed  CAS  Google Scholar 

  • Leon-Velarde F, Sanchez J, Bigard AX, Brunet A, Lesty C, Monge C (1993) High-Altitude tissue adaptation in Andean coots. J Comp Physiol B 163:52–58

    Article  PubMed  CAS  Google Scholar 

  • Luedeke JD, McCall RD, Dillaman RM, Kinsey ST (2004) Properties of slow- and fast-twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise. Comp Biochem Physiol 138A:373–382

    CAS  Google Scholar 

  • Mantilla CB, Sieck GC (2003) Mechanisms underlying motor unit plasticity in the respiratory system. J Appl Physiol 94:1230–1241

    PubMed  Google Scholar 

  • McGuire M, MacDermott M, Bradford A (2003) Effects of chronic intermittent asphyxia on rat diaphragm and limb muscle contractility. Chest 123:875–881

    Article  PubMed  Google Scholar 

  • Messonnier L, Freund H, Feasson L, Prieur F, Castells J, Denis C, Linossier MT, Geyssant A, Lacour JR (2001) Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Eur J Appl Physiol 84:403–412

    Article  PubMed  CAS  Google Scholar 

  • Nachlas MM, Tsou KC, De Souza E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem 5:420–436

    PubMed  CAS  Google Scholar 

  • Panisello P, Torrella JR, Pagés T, Viscor G (2007) Capillary supply and fiber morphometry in rat myocardium after intermittent exposure to hypobaric hypoxia. High Altitude Med Biol 8:322–330

    Article  Google Scholar 

  • Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59:808–817

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Lawler J, Criswell D, Silverman H, Forster HV, Grinton S, Harkins D (1990) Regional metabolic differences in the rat diaphragm. J Appl Physiol 69:648–650

    PubMed  CAS  Google Scholar 

  • Reid MB, Parsons DB, Giddings CJ, Gonyea WJ, Johnson RL (1992) Capillaries measured in canine diaphragm by 2 methods. Anat Rec 234:49–54

    Article  PubMed  CAS  Google Scholar 

  • Ricart A, Casas H, Casas M, Pagés T, Palacios L, Rama R, Rodríguez FA, Viscor G, Ventura JL (2000) Acclimatization near home? Early respiratory changes after short-term intermittent exposure to simulated altitude. Wilderness Environm Med 11:84–88

    CAS  Google Scholar 

  • Richalet JP, Bittel J, Herry JP, Savourey G, Le Trong JL, Auvert JF, Janin C (1992) Use of a hypobaric chamber for pre-acclimatization before climbing Mount Everest. Int J Sports Med 13:S216–S220

    PubMed  Google Scholar 

  • Rodríguez FA, Casas H, Casas M, Pagés T, Rama R, Ricart A, Ventura JL, Ibáñez J, Viscor G (1999) Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc 31:264–268

    Article  PubMed  Google Scholar 

  • Rodriguez FA, Ventura JL, Casas M, Casas H, Pagés T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and haematological adaptations to short intermittent hypobaric hypoxia. Eur J Appl Physiol 82:170–177

    Article  PubMed  CAS  Google Scholar 

  • Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1988) Operation Everest. II Nutrition and body composition. J Appl Physiol 65:2545–2551

    PubMed  CAS  Google Scholar 

  • Sexton WL, Poole DC (1995) Costal diaphragm blood-flow heterogeneity at rest and during exercise. Respir Physiol 101:171–182

    Article  PubMed  CAS  Google Scholar 

  • Sieck GC, Sacks RD, Blanco CE (1987) Absence of regional differences in the size and oxidative capacity of diaphragm muscle fibers. J Appl Physiol 63:1076–1082

    PubMed  CAS  Google Scholar 

  • Sieck GC (1988) Diaphragm muscle. Structural and functional organization. Clin Chest Med 9:195–210

    PubMed  CAS  Google Scholar 

  • Sillau AH, Banchero N (1977) Effects of hypoxia on capillary density and fiber composition in rat skeletal muscle. Pflugers Arch 370:227–232

    Article  PubMed  CAS  Google Scholar 

  • Siqués P, Brito J, León-Velarde F, Barrios L, Cruz JJ, López V, Herruzo R (2006) Time course of cardiovascular and hematological responses in rats exposed to chronic intermittent hypobaric hypoxia (4600 m). High Alt Med Biol 7:72–80

    Article  PubMed  Google Scholar 

  • Snyder GK, Wilcox EE, Burnham EW (1985) Effects of hypoxia on muscle capillarity in Rats. Respir Physiol 62:135–140

    Article  PubMed  CAS  Google Scholar 

  • Sutton JR, Reeves JT, Wagner PD, Groves BM, Cyberman A, Malconian MK, Rock PB, Young PM, Walter SD, Houston CS (1988) Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 64:1039–1321

    Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Marshall JM (1997) The roles of adenosine in regulating the respiratory and cardiovascular systems in chronically hypoxic, adult rats. J Physiol 501:439–447

    Article  PubMed  CAS  Google Scholar 

  • Torrella JR, Whitmore J, Casas M, Fouces V, Viscor G (2000) Capillarity, fibre types and fibre morphometry in different sampling sites across and along the tibialis anterior muscle of the rat. Cells Tissues Organs 167:153–162

    Article  PubMed  CAS  Google Scholar 

  • Viscor G, Torrella JR, Fouces V, Palomeque J (1992) Skeletal muscle capillarization and fiber types in urban and homing pigeons (Columba livia). Comp Biochem Physiol 101A:751–757

    Article  Google Scholar 

  • Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK (1987) Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt Everest. J Appl Physiol 63:2348–2359

    PubMed  CAS  Google Scholar 

  • Ward MP, Milledge JS, West JB (2000) High Altitude Medicine an Physiology, 3rd edn. Arnold, London

    Google Scholar 

  • Weibel ER (1984) The Pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA

  • West JB (1993) Acclimatization and tolerance to extreme altitude. J Wild Med 4:17–26

    CAS  Google Scholar 

  • Yamashita H, Nakanishi K, Tajima F, Sato Y, Kizaki T, Ohishi S, Ohno H (1994) Chronic exposure to simulated altitude does not increase angiogenic activity in skeletal-muscle of rats. Tohoku J Exp Med 172:375–379

    Article  PubMed  CAS  Google Scholar 

  • Zobundzija M, Novak R, Kozaric Z, Mihelic D, Brkic A (1998) The morphohistochemical analysis of the pars costalis and pars lumbalis diaphragmae in lambs. Vet Med Czech 43:357–360

    Google Scholar 

Download references

Acknowledgments

This study was supported by grant BFI2003-03439 as part of the Plan Nacional I+D+I of the Spanish Ministerio de Educación y Ciencia. The authors wish to thank Robin Rycroft and Christopher Evans (UB Language Advisory Service) for their help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginés Viscor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panisello, P., Torrella, J.R., Esteva, S. et al. Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. Eur J Appl Physiol 103, 203–213 (2008). https://doi.org/10.1007/s00421-008-0691-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0691-0

Keywords

Navigation