Skip to main content
Log in

The influence of eccentric exercise on mRNA expression of skeletal muscle regulators

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

To evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28 ± 5 years) and older (68 ± 6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60°/s: six sets, 12–16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise. Paired t tests were used to compare change (pre versus post-exercise) for normalized gene expression in all variables. Independent t tests were performed to test group differences (young vs. older). A probability level of P ≤ 0.05 was used to determine statistical significance with Bonferroni adjustments. We observed no significant change in myostatin (−0.59 ± 2.1 arbitrary units (AU); P = 0.42), follistatin (0.22 ± 3.4; P = 0.85), MyoD (0.23 ± 3.1; P = 0.82), or SGT (1.2 ± 6.4; P = 0.58) mRNA expression in young subjects 24 h after eccentric exercise. Similarly, we did not observe significant change in myostatin (−3.83 ± 8.8; P = 0.23), follistatin (−2.66 ± 5.2; P = 0.17), MyoD (−0.13 ± 3.1; P = 0.90), or SGT (−1.6 ± 3.5; P = 0.19) mRNA expression in older subjects. Furthermore, the non-significant changes in mRNA expression were not different between young and older subjects, P > 0.23 for all variables. Our data suggests that a single bout of maximal eccentric exercise does not alter myostatin, follistatin, MyoD or SGT mRNA gene expression in young or older subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams GR (1998) Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc Sport Sci Rev 26:31–60

    Article  PubMed  CAS  Google Scholar 

  • Adams GR (2006) Satellite cell proliferation and skeletal muscle hypertrophy. Appl Physiol Nutr Metab (Physiologie appliquee, nutrition et metabolisme) 31:782–790

    Google Scholar 

  • Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389–395

    Article  PubMed  CAS  Google Scholar 

  • Carson JA, Alway SE (1996) Stretch overload-induced satellite cell activation in slow tonic muscle from adult and aged Japanese quail. Am J Physiol 270:C578–C584

    PubMed  CAS  Google Scholar 

  • Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81:S52–S69

    Article  PubMed  Google Scholar 

  • Coffey VG, Shield A, Canny BJ, Carey KA, Cameron-Smith D, Hawley JA (2006) Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 290:E849–E855

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  PubMed  CAS  Google Scholar 

  • Dominique JE, Gerard C (2006) Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res 312:2401–2414

    Article  PubMed  CAS  Google Scholar 

  • Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253

    Article  PubMed  Google Scholar 

  • Evans WJ (1992) Exercise, nutrition and aging. J Nutr 122:796–801

    PubMed  CAS  Google Scholar 

  • Evans WJ (2002) Effects of exercise on senescent muscle. Clin Orthop Relat Res S211–S220

  • Evans WJ (2004) Protein nutrition, exercise and aging. J Am Coll Nutr 23:601S–609S

    PubMed  CAS  Google Scholar 

  • Evans WJ, Cannon JG (1991) The metabolic effects of exercise-induced muscle damage. Exerc Sport Sci Rev 19:99–125

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854:78–91

    Article  PubMed  CAS  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    Article  PubMed  CAS  Google Scholar 

  • Hameed M, Lange KH, Andersen JL, Schjerling P, Kjaer M, Harridge SD, Goldspink G (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555:231–240

    Article  PubMed  CAS  Google Scholar 

  • Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277:40735–40741

    Article  PubMed  CAS  Google Scholar 

  • Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG (1996) Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol 80:765–772

    PubMed  CAS  Google Scholar 

  • Jacobs SC, Wokke JH, Bar PR, Bootsma AL (1995) Satellite cell activation after muscle damage in young and adult rats. Anat Rec 242:329–336

    Article  PubMed  CAS  Google Scholar 

  • Jemiolo B, Trappe S (2004) Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem Biophys Res Commun 320:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 288:E1110–E1119

    Article  PubMed  CAS  Google Scholar 

  • Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM (2006) Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101:531–544

    Article  PubMed  CAS  Google Scholar 

  • Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G, Tarnopolsky MA (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18:226–231

    Article  PubMed  CAS  Google Scholar 

  • Marx JO, Kraemer WJ, Nindl BC, Larsson L (2002) Effects of aging on human skeletal muscle myosin heavy-chain mRNA content and protein isoform expression. J Gerontol A Biol Sci Med Sci 57:B232–B238

    PubMed  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814

    PubMed  CAS  Google Scholar 

  • Psilander N, Damsgaard R, Pilegaard H (2003) Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95:1038–1044

    PubMed  CAS  Google Scholar 

  • Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 101:53–59

    Article  PubMed  CAS  Google Scholar 

  • Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA (2003) Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood) 228:706–709

    CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama S, Uchiyama Y, Akatsuka A, Yoshimura S, Roy RR, Edgerton VR (2000) Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am J Physiol Cell Physiol 278:C1143–C1152

    PubMed  CAS  Google Scholar 

  • Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280:E221–E228

    PubMed  CAS  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  PubMed  CAS  Google Scholar 

  • Touchberry CD, Wacker MJ, Richmond SR, Whitman SA, Godard MP (2006) Age-related changes in relative expression of real-time PCR housekeeping genes in human skeletal muscle. J Biomol Tech 17:157–162

    PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Walker KS, Kambadur R, Sharma M, Smith HK (2004) Resistance training alters plasma myostatin but not IGF-1 in healthy men. Med Sci Sports Exerc 36:787–793

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang Q, Zhu D (2003) hSGT interacts with the N-terminal region of myostatin. Biochem Biophys Res Commun 311:877–883

    Article  PubMed  CAS  Google Scholar 

  • Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14:103–110

    PubMed  CAS  Google Scholar 

  • Willoughby D (2004a) Effects of concentric and eccentric muscle actions on serum myostatin and follistatin-like related gene levels. J Sports Sci Med 3:226–233

    Google Scholar 

  • Willoughby DS (2004b) Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 36:574–582

    Article  PubMed  Google Scholar 

  • Yang Y, Creer A, Jemiolo B, Trappe S (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6:343–348

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Todd Schroeder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

421_2007_521_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensky, N.E., Sims, J.K., Rice, J.C. et al. The influence of eccentric exercise on mRNA expression of skeletal muscle regulators. Eur J Appl Physiol 101, 473–480 (2007). https://doi.org/10.1007/s00421-007-0521-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0521-9

Keywords

Navigation