Skip to main content

Advertisement

Log in

Deterioration of contractile properties of muscle fibres in elderly subjects is modulated by the level of physical activity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The impact of ageing on force and velocity of human skeletal muscle fibres has been extensively studied. As discrepancies have been reported, it is still unclear whether or not a deterioration of the capacity of muscle fibres to develop force and shortening is involved in determining weakness and decrease in shortening velocity of skeletal muscle of elderly people. We compared myosin heavy chain (MHC) isoform distribution of vastus lateralis muscle, and specific force (Po/CSA) and maximum shortening velocity (Vo) of skeletal muscle fibres among one population of young controls (CTRL) and three populations of elderly (EL) subjects with very variable levels of physical activity: sedentary (EL-SED, n = 3); controls (EL-CTRL, n = 4); endurance trained (EL-END, n = 3). Muscle phenotype was progressively faster in the order EL-END → CTRL → EL-CTRL → EL-SED. Po/CSA and Vo also varied among the different populations of elderly subjects generally showing a decreasing deterioration with increasing activity levels. The results suggest that discrepancies observed so far in age-induced deterioration of contractile properties of muscle fibres could depend on the different activity levels of the populations of elderly subjects enrolled in the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13:40–47

    Article  PubMed  Google Scholar 

  • Aoyagi Y, Shephard RJ (1992) Aging and muscle function. Sports Med 14:376–396

    PubMed  CAS  Google Scholar 

  • Baumann H, Jaggi M, Soland F, Howald H, Schaub MC (1987) Exercise training induces transitions of myosin isoform subunits within histochemically typed human muscle fibres. Pflugers Arch 409:349–360

    Article  PubMed  CAS  Google Scholar 

  • Bottinelli R, Betto R, Schiaffino S, Reggiani C (1994) Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 478(Pt 2):341–349

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol Lond 495:573–586

    PubMed  CAS  Google Scholar 

  • Bruce SA, Newton D, Woledge RC (1989) Effect of age on voluntary force and cross-sectional area of human adductor pollicis muscle. Q J Exp Physiol 74:359–362

    PubMed  CAS  Google Scholar 

  • Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36:174–182

    PubMed  CAS  Google Scholar 

  • D’Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, Moro G, Miotti D, Canepari M, Bottinelli R (2006) Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 570:611–627

    Article  PubMed  CAS  Google Scholar 

  • D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Fox K (2006) Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol (this volume)

  • Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    Article  PubMed  CAS  Google Scholar 

  • Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326

    PubMed  CAS  Google Scholar 

  • Godt RE, Maughan DW (1977) Swelling of skinned muscle fibers of the frog. Experimental observations. Biophys J 19:103–116

    PubMed  CAS  Google Scholar 

  • Harber MP, Gallagher PM, Creer AR, Minchev KM, Trappe SW (2004) Single muscle fiber contractile properties during a competitive season in male runners. Am J Physiol Regul Integr Comp Physiol 287:R1124–R1131

    CAS  Google Scholar 

  • Harber MP, Gallagher PM, Trautmann J, Trappe SW (2002) Myosin heavy chain composition of single muscle fibers in male distance runners. Int J Sports Med 23:484–488

    Article  PubMed  CAS  Google Scholar 

  • Harridge SDR, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjornsson M, Saltin B (1996) Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432:913–920

    Article  PubMed  CAS  Google Scholar 

  • Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE (2000) Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. Am J Physiol Endocrinol Metab 278:E620–E626

    PubMed  CAS  Google Scholar 

  • Hortobagyi T, Dempsey L, Fraser D, Zheng D, Hamilton G, Lambert J, Dohm L (2000) Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol 524(Pt 1):293–304

    Article  PubMed  CAS  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990a) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    CAS  Google Scholar 

  • Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviati G, Saltin B (1990b) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand 140:55–62

    Article  CAS  Google Scholar 

  • Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46:451–456

    PubMed  CAS  Google Scholar 

  • Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432:320–328

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–C649

    PubMed  CAS  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No, 11–16

    Google Scholar 

  • Liu Y, Schlumberger A, Wirth K, Schmidtbleicher D, Steinacker JM (2003) Different effects on human skeletal myosin heavy chain isoform expression: strength vs. combination training. J Appl Physiol 94:2282–2288

    PubMed  CAS  Google Scholar 

  • Pellegrino M, D'Antona G, Lanfranconi F, Adami R, Todde F, Bottinelli R (2003) Structure and function of single muscle fibres from hypertrophic muscle of body builders. J Muscle Res Cell Motil 24:338

    Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol 96:885–892

    Article  PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML, Delbono O (1997) Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157:247–253

    Article  PubMed  CAS  Google Scholar 

  • Trappe S, Costill D, Thomas R (2000a) Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 32:48–56

    Google Scholar 

  • Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T (2003) Single muscle fibre contractile properties in young and old men and women. J Physiol 552:47–58

    Article  PubMed  CAS  Google Scholar 

  • Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004) Human single muscle fiber function with 84-d bedrest and resistance exercise. J Physiol 557:501–513

    Article  PubMed  CAS  Google Scholar 

  • Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D (2000b) Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89:143–152

    CAS  Google Scholar 

  • Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH (1999) Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol Lond 516:915–930

    Article  PubMed  CAS  Google Scholar 

  • Widrick JJ, Romatowski JG, Bain JL, Trappe SW, Trappe TA, Thompson JL, Costill DL, Riley DA, Fitts RH (1997) Effect of 17 days of bed rest on peak isometric force and unloaded shortening velocity of human soleus fibers. Am J Physiol 273:C1690–1699

    PubMed  CAS  Google Scholar 

  • Widrick JJ, Stelzer JE, Shoepe TC, Garner DP (2002) Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283:R408–416

    PubMed  CAS  Google Scholar 

  • Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5:145–154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union contract Better-Ageing (QLK6-CT2001-00323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bottinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Antona, G., Pellegrino, M.A., Carlizzi, C.N. et al. Deterioration of contractile properties of muscle fibres in elderly subjects is modulated by the level of physical activity. Eur J Appl Physiol 100, 603–611 (2007). https://doi.org/10.1007/s00421-007-0402-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0402-2

Keywords

Navigation