Skip to main content
Log in

Possible involvement of plasma antioxidant defences in training-associated decrease of platelet responsiveness in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate in sedentary individuals the effects of a 20-week exercise training program on ex vivo platelet responsiveness and the possible involvement of plasma antioxidant defences in relation to the mechanisms controlling platelet sensitivity. A statistically significant decrease in ADP- and collagen-evoked platelet aggregation was observed after physical training together with an increase in plasma total antioxidant capacity (TEAC), superoxide dismutase activity, and high-density lipoprotein cholesterol (HDL-C) concentration. Additionally, a rise in lag time for in vitro low-density lipoprotein (LDL) oxidation as well as a decreased plasma level of secondary products of lipid peroxidation were observed after training, and the values for lag time were significantly correlated with TEAC and HDL-C. Nitrate/nitrite (NOx) content both in plasma and in platelet cytosol was significantly enhanced at the end of the training period and a significant positive correlation was found between plasma and intraplatelet NOx values. Furthermore, intraplatelet NOx content was positively correlated with HDL-C levels. The findings of the current study suggest that the improvement of antioxidant defences induced by moderate regular exercise may be involved in desensitising blood platelets most likely through the inhibition of LDL oxidation and the simultaneous enhancement of plasma and intraplatelet NOx bioavailability and HDL-C level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B, Peters JR (1998) Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 77:498–502

    Google Scholar 

  • Bergholm R, Makimattila S, Valkonen M, Liu ML, Lahdenpera S, Taskinen MR, Sovijarvi A, Malmberg P, Yki-Jarvinen H (1999) Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilation in vivo. Atherosclerosis 145:341–349

    Article  CAS  PubMed  Google Scholar 

  • Bode-Boger SM, Boger RH, Galland A, Frolic JC (1994) Exercise increases systemic nitric oxide production in men. J Cardiovasc Risk 1:173–178

    CAS  PubMed  Google Scholar 

  • Chen LY, Mehta JL (1994) Inhibitory effect of high-density lipoprotein on platelet function is mediated by increase in nitric oxide synthase activity in platelets. Life Sci 55:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Chen HI, Li HT, Chen CC (1994) Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits: possible roles of epinephrine-evoked endothelium-derived relaxing factor. Circulation 90:970–975

    CAS  PubMed  Google Scholar 

  • Chen LY, Nichols WW, Hendricks J, Mehta JL (1995) Myocardial neutrophil infiltration, lipid peroxidation and antioxidant activity after coronary artery thrombosis and thrombolysis. Am Heart J 129:211–218

    CAS  PubMed  Google Scholar 

  • Chen LY, Metha P, Metha JL (1996) Oxidized LDL decreases l-arginine uptake and nitric oxide synthase protein expression in human platelets. Circulation 93:1740–1746

    CAS  PubMed  Google Scholar 

  • Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS (1997) Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men. J Appl Physiol 83:2019–2028

    Google Scholar 

  • Dufaux BG, Assmann G, Hollmann W (1982) Plasma lipoprotein and physical activity: a review. Int J Sports Med 3:123–126

    CAS  PubMed  Google Scholar 

  • Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD (2001) Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 31:1033–1062

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Jurgens G, Quehenberger O, Koller E (1987) Autooxidant of human low density lipoprotein: loss of polyunsatured fatty acids and vitamin E and generation of aldehydes. J Lipid Res 28:495–509

    CAS  PubMed  Google Scholar 

  • Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174

    Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein in plasma without the use of preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  • Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105:1631–1639

    CAS  PubMed  Google Scholar 

  • Grandjean PW, Oden GL, Crouse SF, Brown JA, Green JS (1996) Lipid and lipoprotein changes in women following 6 months of exercise training in a worksite fitness program. J Sports Med Phys Fitness 36:54–59

    CAS  PubMed  Google Scholar 

  • Grisham MB, Johnson GG, Lancaster JR (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    CAS  PubMed  Google Scholar 

  • Hassall DG, Forrest LA, Bruckdorfer KR, Marenah CB, Turner P, Cortese C, Miller NE, Lewis B (1983) Influence of plasma lipoproteins on platelet aggregation in a normal male population. Arterosclerosis 3:332–338

    CAS  Google Scholar 

  • Hirayama A, Noronha-Dutra AA, Gorge MP, Neild GH, Hothersall JS (1999) S-nitrosothiols are stored by platelets and released during platelet-neutrophil interaction. Nitric Oxide 3:95–104

    Article  CAS  PubMed  Google Scholar 

  • Jungersten L, Ambring A, Wall B, Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol 82: 760–764

    CAS  PubMed  Google Scholar 

  • Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD (1993) Effect of strenuous exercise on platelet activation state and reactivity. Circulation 88:1502–1511

    CAS  PubMed  Google Scholar 

  • Lakka TA, Venalainen JM, Rauramaa R, Salonen R, Tuomilehto J, Salonen JT (1994) Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med 330:1549–1554

    CAS  PubMed  Google Scholar 

  • LeMura LM, von Duvillard SP, Andreacci J, Klebez JM, Chelland SA, Russo J (2000) Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur J Appl Physiol 82: 451–458

    Google Scholar 

  • Liu M, Bergholm R, Makimattila S, Lahdenpeira S, Valkonen M, Hilden H, Yki-Jarvinen H, Taskinen M (1999) A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 276:E1083–1091

    CAS  PubMed  Google Scholar 

  • Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88:756–762

    CAS  PubMed  Google Scholar 

  • Mackness MI, Arrol S, Durrington PN (1991) Paroxonase prevents accumulation of lipoperoxides in low-density lipoproteins. FEBS Lett 286:152–154

    CAS  PubMed  Google Scholar 

  • Maeda S, Miyauchi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe Y, Murakami H, Kumagai Y, Kuno S, Matsuda M (2001) Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 69:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    CAS  PubMed  Google Scholar 

  • Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214:11–16

    Article  CAS  PubMed  Google Scholar 

  • Naesh O, Hindberg I, Trap-Jensen J, Lund JO (1990) Post-exercise platelet activation-aggregation and release in relation to dynamic exercise. Clin Physiol 10:221–230

    CAS  PubMed  Google Scholar 

  • Node K, Kitakaze M, Sato H, Koretsune Y, Katsube Y, Karita M, Kosaka H, Hori M (1997) Effect of acute dynamic exercise on circulating plasma nitric oxide level and correlation to norepinephrine release in normal subjects. Am J Cardiol 79:526–528

    Article  CAS  PubMed  Google Scholar 

  • Rauramaa R, Salonen JT, Seppänen K, Salonen R, Venäläinen JM, Ihanainen M, Rissanen V (1986) Inhibition of platelet aggregability by moderate-intensity physical exercise: a randomized clinical trial in overweight men. Circulation 74:939–944

    CAS  PubMed  Google Scholar 

  • Sanchez-Quesada JL, Ortega H, Payes-Romero A, Serrat-Serrat J, Gonzalez-Sastre F, Lasuncion MA, Ordonez-Llanos J (1997) LDL from aerobically trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects. Atherosclerosis 132:207–213

    Article  CAS  PubMed  Google Scholar 

  • Shern-Brewer R, Santanam N, Wetzstein C, White-Welkley J, Parthasarathy S (1998) Exercise and cardiovascular disease. Arterioscler Thromb Vasc Biol 18:1181–1187

    CAS  PubMed  Google Scholar 

  • Superko HR, Haskell WH (1987) The role of exercise training in the therapy of hyperlipoproteinemia. Cardiol Clin 5:285–310

    CAS  PubMed  Google Scholar 

  • Tozzi-Ciancarelli MG, Penco M, Di Massimo C (2002) Influence of acute exercise on human platelet responsiveness: possible involvement of exercise-induced oxidative stress. Eur J Appl Physiol 86:266–272

    Google Scholar 

  • Wang JS, Jen CJ, Chen HI (1995) Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb Vasc Biol 15:1668–1674

    CAS  PubMed  Google Scholar 

  • Wang JS, Jen CJ, Chen HI (1997) Effects of chronic exercise and deconditioning on platelet function in women. J Appl Physiol 83:2080–2085

    Google Scholar 

  • Wilson PWF, Paffenbarger RS, Morris JN, Havlik RJ (1986) Assessment methods for physical activity and physical fitness in population studies: report of a NHLBI workshop. Am Heart J 111:1177–1192

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Tozzi-Ciancarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Massimo, C., Scarpelli, P., Penco, M. et al. Possible involvement of plasma antioxidant defences in training-associated decrease of platelet responsiveness in humans. Eur J Appl Physiol 91, 406–412 (2004). https://doi.org/10.1007/s00421-003-0998-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0998-9

Keywords

Navigation