Skip to main content
Log in

Experimental study on creep characteristics of infiltrated coal-rock under load

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A series of laboratory tests were conducted, analyzing the influence of stress level and infiltration time on the creep properties of the coal-rock. The total damage variable based on damage mechanics is defined based on the coupling of the infiltration damage variable based on macro-benchmark variable and the stress damage variable based on creep timeliness, by characterizing the pattern of the infiltration–stress coupling effect on the total damage variable. The study shows that coal-rock underwent a process from surface drying and shrinkage to water absorption and swelling to water-filled infiltration damage in the infiltration test. With the increase of infiltration time, the water content of coal-rock tended to increase and eventually stabilizes, while the uniaxial compressive strength was gradually decreased. With the increase in stress level and infiltration time, the stable creep strain of coal-rock kept increasing, which accelerated creep advance, and its internal damage continued to accumulate and eventually led to destabilization damage. At the same stress level, mechanical parameter continued to decrease. Comparing the theoretical model of infiltrated coal-rock creep with the experimental data, the model developed in this paper reflected the whole process of infiltrated coal-rock creep deformation and damage and can characterize the influence of infiltration time and stress level on coal-rock creep properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The [DATA TYPE] data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

ε :

Total strain of the infiltrated coal-rock

ε 0 :

Instantaneous strain

ε ve :

Viscoelastic strain

ε 1 :

Viscosity strain

ε p :

Plastic strain

σ 0 :

Stress on the coal-rock

E 0 :

Instantaneous modulus of elasticity

E 1 :

Deceleration stage elastic modulus

η 1, η 2 :

Viscous hysteresis coefficient

t :

Creep time

S :

Total area

S 1 :

Damaged part area

S 2 :

Undamaged part area

S w :

Infiltration damage area

D w :

Infiltration damage variable

S 3 :

Infiltration and stress coupling damage area

S 4 :

Stress damage area

D :

Stress damage variable

D m :

Total damage variable

σ 0 :

Stress level of coal-rock

σ s :

Yield strength of the damaged body

σ 1 :

Undamaged part stress

E 2 :

Modulus of elasticity in the accelerated phase

C, v :

Coal-rock material parameters

t F :

Creep life

R w :

Uniaxial compressive strength of the coal-rock specimen in the infiltrated state

R d :

Uniaxial compressive strength of the coal-rock specimen in the dry state

T :

Infiltration time

References

  1. Baud, P., Meredith, P.G.: Damage accumulation during triaxial creep ofdarley dale sandstone from pore volumometiy and acoustic emission. Int. J. Rock Mech. Min. Sci. 34(3–4), 24.e1-24.e10 (1997). https://doi.org/10.1016/S1365-1609(97)00060-9

    Article  Google Scholar 

  2. Kurita, K., Swanson, P.L., Getting, I.C., Spetzler, H.: Surface deformation of westerly granite during creep. Geophys. Res. Lett. 10(1), 75–78 (1983). https://doi.org/10.1029/GL010i001p00075

    Article  Google Scholar 

  3. Ngwenya, B.T., Main, I.G., Elphick, S.C., Crawford, B.R., Smart, B.: A constitutive law for low-temperature creep of water-saturated sandstones. J. Geophys. Res. 106(B10), 21811–21826 (2001). https://doi.org/10.1029/2001JB000403

    Article  Google Scholar 

  4. Heap, M.J., Baud, P., Meredith, P.G., Bell, A.F., Main, I.G.: Time-dependent brittle deformation in darley dale sandstone. J. Geophys. Res. 114(B7), 4288–4309 (2009). https://doi.org/10.1029/2008JB006212

    Article  Google Scholar 

  5. Heap, M.J., Baud, P., Meredith, P.G.: The influence of temperature on brittle creep in sandstones. Geophys. Res. Lett. 36(19), 308–308 (2009). https://doi.org/10.1029/2009GL039373

    Article  Google Scholar 

  6. Heap, M.J., Baud, P., Meredith, P.G., Vinciguerra, S., Bell, A., Main, I.: Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet. Sci. Lett. 307(1), 71–82 (2011). https://doi.org/10.1016/j.epsl.2011.04.035

    Article  Google Scholar 

  7. Schoenball, M., Sahara, D.P., Kohl, T.: Time-dependent brittle creep as a mechanism for time-delayed wellbore failure. Int. J. Rock Mech. Min. Sci. 70, 400–406 (2014). https://doi.org/10.1016/j.ijrmms.2014.05.012

    Article  Google Scholar 

  8. Mishra, B., Verma, P.: Uniaxial and triaxial single and multistage creep tests on coal-measure shale rocks. Int. J. Coal Geol. 137(1), 55–65 (2015). https://doi.org/10.1016/j.coal.2014.11.005

    Article  Google Scholar 

  9. Mao, Y.Q., Xia, W.C., Peng, Y.L., Xie, G.Y.: Relationship model between pore wetting and floatabilityof active carbon: potential guidance on porous mineral flotation. Miner. Eng. 157, 106556 (2020). https://doi.org/10.1016/j.mineng.2020.106556

    Article  Google Scholar 

  10. Hadiseh, M., Rassoul, A.: Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19–27 (2018). https://doi.org/10.1016/j.ijrmms.2018.07.006

    Article  Google Scholar 

  11. Trzeciak, M., Sone, H., Dabrowski, M.: Long-term creep tests and viscoelastic constitutive modeling of lower Paleozoic shales from the Baltic Basin, N Poland. Int. J. Rock Mech. Min. Sci. 112, 139–157 (2018). https://doi.org/10.1016/j.ijrmms.2018.10.013

    Article  Google Scholar 

  12. Zhao, K., Xiong, L.X., Kuang, Z.L., Xu, Z.Y., Zeng, P.: Uniaxial compression creep characteristics and acoustic emission characteristics of two different kinds of red sandstone with different particle sizes. Arab. J. Sci. Eng. 46, 11195–11206 (2021). https://doi.org/10.1007/S13369-021-05713-5

    Article  Google Scholar 

  13. Tan, T.K., Kang, W.F.: Locked in stresses, creep and dilatancy of rocks, and constitutive equations. Rock Mech. Felsmechanik Mécanique des Roches. 13(1), 5–22 (1980). https://doi.org/10.1016/0148-9062(81)90320-X

    Article  Google Scholar 

  14. Wang, G.J.: A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 41(3), 1–7 (2004). https://doi.org/10.1016/j.ijrmms.2004.03.020

    Article  Google Scholar 

  15. Yang, X.R., Jiang, J.N., Jiang, Z.B.: Research on creep test and damage model of soft rock under water-bearing condition. Rock Soil Mech. 39(S1), 167–174 (2018). https://doi.org/10.16285/j.rsm.2017.2560. (in Chinese)

    Article  MathSciNet  Google Scholar 

  16. Kang, J.H., Zhou, F.B., Liu, C., Liu, Y.: K: A fractional non-linear creep model for coal considering damage effect and experimental validation. Int. J. Non-Linear Mech. 76, 20–28 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.05.004

    Article  Google Scholar 

  17. Wang, Q.H., Ye, Y.C., Liu, Y.Z., Yao, J.: Constitutive model for the whole process of rock creep considering initial damage and creep damage. Rock Soil Mech. 37(S1), 57–62 (2016). https://doi.org/10.16285/j.rsm.2016.S1.007. (in Chinese)

    Article  Google Scholar 

  18. Yuan, Y., Liu, R., Qiu, C.L., Tan, R.J.: Establishment and application of a stress-related creep constitutive model of soft soil. J. Tianjin Univ. 51(7), 711–719 (2018). https://doi.org/10.11784/tdxbz201707076. (in Chinese)

    Article  Google Scholar 

  19. Choens, R.C., Bauer, S.J., Shalev, E., Lyakhovsky, V.: Modelling yield cap evolution in sandstone based on brittle creep experiments. Int. J. Rock Mech. Min. Sci. 141(7), 140706 (2021). https://doi.org/10.1016/j.ijrmms.2021.104706

    Article  Google Scholar 

  20. Wang, Y.X., Cao, P., Huang, Y.H., Wen, Y.D., Wan, L.H., Li, J.T.: Time dependence of soft rock softening and damage and fracture effects under water. J. Sichuan Univ.. 42(04), 55–62 (2010). https://doi.org/10.1016/S1876-3804(11)60004-9. (in Chinese)

    Article  Google Scholar 

  21. He, F., Wang, L.G., Zhao, N., Zhang, L.L.: Criterion and application of coal and rock creep fracture determination. J. China Coal Soc.. 36(01), 39–42 (2011). (in Chinese)

    Google Scholar 

  22. He, F., Wang, L.G., Wang, Z.W., Yao, Z.X.: Experimental study on the coupling law of coal and rock creep-seepage. J. China Coal Soc. 36(06), 930–933 (2011). (in Chinese)

    Google Scholar 

  23. Huang, M., Liu, X.R., Deng, T.: Study on the creep properties of T2b2 siltite in terms of the damage law induced by water. J. Fuzhou Univ. 40(3), 399–405 (2012). (in Chinese)

    Google Scholar 

  24. Wang, J.G., Liang, B., Tian, M.: Study on nonlinear damage and creep characteristics of oil shale under water-bearing conditions. Exp. Mech. 29(1), 112–117 (2014). https://doi.org/10.7520/1001-4888-13-116. (in Chinese)

    Article  Google Scholar 

  25. Chen, L.W., Li, S.J., Chen, Y.F., Zhang, K.X., Liu, Y.X.: Development and application of a water-bearing creep damage model for rocks. Chin. J. Solid Mech. 39(06), 642–651 (2018). https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2018.018. (in Chinese)

    Article  Google Scholar 

  26. Yang, S.Q., Xu, P., Ranjith, P.G.: Damage model of coal under creep and triaxial compression. Int. J. Rock Mech. Min. Sci. 80, 337–345 (2015). https://doi.org/10.1016/j.ijrmms.2015.10.006

    Article  Google Scholar 

  27. Xu, T., Ren, S.Y., Fan, C., Xu, Tao: Research on weakening rheological model of water-bearing rock based on variable parameters. Chin. Sci. Technol. Paper 13(1), 70–77 (2018). https://doi.org/10.3969/j.issn.2095-2783.2018.01.015. (in Chinese)

    Article  Google Scholar 

  28. Hashiba, K., Fukui, K., Kataoka, M., Chu, S.Y.: Effect of water on the strength and creep lifetime of andesite. Int. J. Rock Mech. Min. Sci. 108, 37–42 (2018). https://doi.org/10.1016/j.ijrmms.2018.05.006

    Article  Google Scholar 

  29. Zhang, J.Y., Deng, H.F., Duan, G.Y., Wan, L.P., Sun, X.S.: Experimental study on the creep characteristics of cemented backfill in a goaf under water pressure. Adv. Mater. Sci. Eng. 2020(1), 1–13 (2020). https://doi.org/10.1155/2020/3815397

    Article  Google Scholar 

  30. Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 305–336 (1992). https://doi.org/10.1115/1.3119761

    Article  Google Scholar 

  31. Zheng, X.Q., Liu, J., Bian, K., Liu, S.G., Liu, Z.P., Ai, F.: Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei. Rock Soil Mech. 38(7), 2022–2028 (2017). https://doi.org/10.16285/j.rsm.2017.07.023. (in Chinese)

    Article  Google Scholar 

  32. Ai, T., Wu, S.Y., Zhang, R., Gao, M.Z., Zhou, J.F., Xie, J., Ren, L., Zhang, Z.P.: Changes in the structure and mechanical properties of a typical coal induced by water immersion. Int. J. Rock Mech. Min. Sci. 138, 104597 (2021). https://doi.org/10.1016/j.ijrmms.2020.104597

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 12172280, 42077274) and the Key Technology Innovation Team Project of Shaanxi Province (No. 2020JZ-53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, F. & Yang, G. Experimental study on creep characteristics of infiltrated coal-rock under load. Arch Appl Mech 93, 1331–1349 (2023). https://doi.org/10.1007/s00419-022-02331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02331-x

Keywords

Navigation