Skip to main content
Log in

Uniaxial Compression Creep Characteristics and Acoustic Emission Characteristics of Two Different Kinds of Red Sandstone with Different Particle Sizes

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, we tested uniaxial compression deformation and uniaxial compression creep on red sandstone specimens with fine- and medium-sized particles; microstructure development and acoustic emission (AE) were recorded. The creep deformation characteristics and AE parameters of these two kinds of sandstone specimens were then compared and analysed. Results show that the microstructure of fine-grained sandstone is the granular sand-like structure, and the medium-grained sandstone has a grain-like microstructure. The particle size obviously influences uniaxial compressive mechanism; the medium-grained sandstone has a higher creep deformation than the fine-grained sandstone, while the AE amplitude, AE event rate and AE ring-down count rate of the medium- and fine-grained sandstone specimens have similar trend during the creep stage. The failure of both medium- and fine-grained sandstone mainly occurs in the transient and accelerated creep stages during the creep process. By combining the variation of AE parameters and AE-r value (the ratio of the accumulative hits and the cumulative energy) in the various creep stages, we found the creep damage to sandstone could be predicted to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiong, L.X.; Li, T.B.; Yang, L.D.: Biaxial compression creep test on greenschist considering the effects of water content and anisotropy. KSCE J. Civil Eng. 18(1), 103–112 (2014)

    Article  Google Scholar 

  2. Chen, J.W.: Creep mechanical behavior of silty mudstone under complicated geological conditions. J. Yangtze River Sci. Res. Inst. 35, 102–107 (2018)

    Google Scholar 

  3. Ohnaka, M.: Acoustic emission during creep of brittle rock. Int. J. Rock Mech. Mining Sci. 20, 121–134 (1983)

    Article  Google Scholar 

  4. Yang, Y.J.; Wang, D.C.; Zhao, N.N.; Chen, S.J.: Acoustic emission characteristics of coal creep under step load. J. Basic Sci. Eng. 21, 159–166 (2013)

    Google Scholar 

  5. Gong, C.; Li, C.H.; Zhao, K.: Acoustic emission characteristics during short-time creep process of red sandstone under different stress level. J. Northeast. Univ. (Nat. Sci.) 36, 1347–1352 (2015)

    Google Scholar 

  6. Chen, C.F.; Xu, T.; Heap, M.J.; Baud, P.: Influence of unloading and loading stress cycles on the creep behavior of Darley Dale sandstone. Int. J. Rock Mech. Mining Sci. 112, 55–63 (2018)

    Article  Google Scholar 

  7. Li, P.: Experimental study on creep damage of sandstone based on acoustic emission tests. J. Yangtze River Sci. Res. Inst. 35, 78–83 (2018)

    Google Scholar 

  8. Shi, G.C.; Yang, X.J.; Yu, H.C.; Zhu, C.: Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression. Eng. Fract. Mech. 210, 13–28 (2019)

    Article  Google Scholar 

  9. Zhu, W.C.; Li, S.H.; Li, S.; Niu, L.L.: Influence of dynamic disturbance on the creep of sandstone: an experimental study. Rock Mech. Rock Eng. 52, 1023–1039 (2019)

    Article  Google Scholar 

  10. Zeng, Y.; Liu, J.F.; Zhou, Z.W.; Wu, C.; Li, Z.C.: Study on creep acoustic emission and damage evolution of salt rock under uniaxial compression. Rock Soil Mech. 40, 207–215 (2019)

    Google Scholar 

  11. Paraskevopoulou, C.; Perras, M.; Diederichs, M.; Loew, S.; Lam, T.; Jensen, M.: Time-dependent behaviour of brittle rocks based on static load laboratory tests. Geotech. Geol. Eng. 36, 337–376 (2018)

    Article  Google Scholar 

  12. Nicksiar, M.; Martin, C.D.: Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng. Geol. 154, 64–76 (2013)

    Article  Google Scholar 

  13. Xue, L.; Qin, S.Q.; Sun, Q.; Wang, Y.Y.; Lee, L.M.; Li, W.C.: A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech. Rock Eng. 47, 1183–1195 (2015)

    Article  Google Scholar 

  14. Kim, J.S.; Lee, K.S.; Cho, W.J.; Choi, H.J.; Cho, G.C.: A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock. Rock Mech. Rock Eng. 48, 495–508 (2015)

    Article  Google Scholar 

  15. Pepe, G.; Mineo, S.; Pappalardo, G.; Cevasco, A.: Relation between crack initiation-damage stress thresholds and failure strength of intact rock. Bull. Eng. Geol. Environ. 77, 709–724 (2018)

    Article  Google Scholar 

  16. Li, X.F.; Li, H.B.; Liu, L.W.; Liu, Y.Q.; Ju, M.H.; Zhao, J.: Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int. J. Rock Mech. Mining Sci. 127, 104219 (2020)

    Article  Google Scholar 

  17. Zhang, G.K.; Li, H.B.; Wang, M.Y.; Li, X.F.: Crack initiation of granite under uniaxial compression tests: a comparison study. J. Rock Mech. Geotech. Eng 127, 656–666 (2020)

    Article  Google Scholar 

  18. Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S.: Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 35, 222–233 (1998)

    Article  Google Scholar 

  19. Chen, G.Q.; Wang, J.C.; Li, J.; Li, T.B.; Zhang, H.: Influence of temperature on crack initiation and propagation in granite. Int. J. Geomech. 18, 04018094(1)-04018094(14) (2018)

    Google Scholar 

  20. Zhu, J.; Deng, J.H.; Huang, Y.M.; He, Z.L.: Influence of water on the fracture process of marble with acoustic emission monitoring. KSCE J. Civil Eng. 23, 3239–3249 (2019)

    Article  Google Scholar 

  21. Wang, Z.L.; He, A.L.; Shi, G.Y.; Mei, G.X.: Temperature effect on AE energy characteristics and damage mechanical behaviours of granite. Int. J. Geomech. 18(3), 04017163(1)-04017163(10) (2018)

    Google Scholar 

  22. Hall, S.A.; Sanctis, F.D.; Viggiani, G.: Monitoring fracture propagation in a soft rock (Neapolitan Tuff) using acoustic emissions and digital images. Pure Appl. Geophy. 163, 2171–2204 (2006)

    Article  Google Scholar 

  23. Zhao, K.; Zhu, Z.C.; Zeng, P.; Chen, S.J.: Experimental study on acoustic emission characteristics of phyllite specimens under uniaxial compression. J. Eng. Sci. Technol. Rev. 8(3), 53–60 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51664018, 41002108), and the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety (Grant No. 2019ZDK051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangxiao Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Xiong, L., Kuang, Z. et al. Uniaxial Compression Creep Characteristics and Acoustic Emission Characteristics of Two Different Kinds of Red Sandstone with Different Particle Sizes. Arab J Sci Eng 46, 11195–11206 (2021). https://doi.org/10.1007/s13369-021-05713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05713-5

Keywords

Navigation