Skip to main content

Advertisement

Log in

Brownian motion and thermophoretic effects on non-Newtonian nanofluid flow via Crank–Nicolson scheme

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Herein, we examined the impact of Brownian motion and thermophoresis on MHD stagnation-point nanofluid flow toward vertical stretching surface using the non-Newtonian Prandtl fluid model. The governing mathematical model consists of a set of nonlinear partial differential equations along with associated boundary conditions. The similarity conversion technique is adopted to convert them to nonlinear ordinary differential equations, which are then solved numerically using the Finite-Difference Crank–Nicolson Method. The simulation is performed to examine flow, heat and mass transfer due to changes in physical parameters. The study revealed that, in the buoyancy opposing flow region, the heat transfer rate increases, and the mass transfer rate decreases due to an increase in Brownian motion. Moreover, augmentation in thermophoresis effects enhances the mass transfer rate, while the heat transfer rate is not dominantly affected. It is further noticed that the FDM-based Crank–Nicolson scheme is well matched and efficient to deal with the solution of such kinds of nonlinear physical models arising in mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu. Bussei. 7, 227–233 (1993)

    Google Scholar 

  2. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H. P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME, FED-Vol. 231/MD-Vol. 66, 99–105 (1995)

  3. Kwak, K., Kim, C.: Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea Aust. Rheol. J. 17, 35–40 (2005)

    Google Scholar 

  4. Wong, K.V., Leon, O.D.: Applications of nanofluids: current and future. Adv. Mech. Eng. (2010). https://doi.org/10.1155/2010/519659

    Article  Google Scholar 

  5. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Google Scholar 

  6. Das, S.K., Putra, N., Thiesen, P.H., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Trans. 125, 567–574 (2003)

    Google Scholar 

  7. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Trans. 50, 2002–2018 (2007)

    MATH  Google Scholar 

  8. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  9. Soomro, F.A., Zaib, A., Haq, R.U., Sheikholeslami, M.: Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int. J. Heat Mass Trans. 129, 1242–1249 (2019)

    Google Scholar 

  10. Soomro, F.A., Haq, R.U., Khan, Z.H., Zhang, Q.: Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. Eur. Phys. J. Plus 132, 412 (2017)

    Google Scholar 

  11. Lund, L.A., Omar, Z., Khan, I., Seikh, A.H., Sherif, E.S.M., Nisar, K.S.: Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. 9, 421–432 (2020)

    Google Scholar 

  12. Khan, U., Zaib, A., Khan, I., Baleanud, D., Sherif, E.S.M.: Comparative investigation on MHD nonlinear radiative flow through a moving thin needle comprising two hybridized AA7075 and AA7072 alloys nanomaterials through binary chemical reaction with activation energy. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.02.008

    Article  Google Scholar 

  13. Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Trans. 124, 706–714 (2018)

    Google Scholar 

  14. Usman, M., Hamid, M., Zubair, T., Haq, R.U., Wang, W.: Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Trans. 126, 1347–1356 (2018)

    Google Scholar 

  15. Kata, S., Ganganapalli, S., Kuppalapalle, V.: Effect of thermophoresis and Brownian motion on the melting heat transfer of a Jeffrey fluid near a stagnation point towards a stretching surface: Buongiorno’s model. Heat Trans. Asian Res. (2019). https://doi.org/10.1002/htj.21544

    Article  Google Scholar 

  16. Ramana Reddy, J.V., Sugunamma, V., Sandeep, N.: Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. Alexandria Eng. J. 57, 2465–2473 (2017)

    Google Scholar 

  17. Mabood, F., Ibrahim, S.M., Khan, W.A.: Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics. Results Phys. 6, 1015–1023 (2016)

    Google Scholar 

  18. Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Seikh, A.H., Sherif, E.S.M., Nisar, K.S.: Brownian motion and thermophoretic diffusion effects on micropolar type nanofluid flow with soret and dufour impacts over an inclined sheet: keller-box simulations. Energies 12, 4191 (2019)

    Google Scholar 

  19. Ibrahim, W., Makinde, O.D.: Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip. Proc. Instit. Mech. Eng. E J. Process Mech. Eng. 230(5), 345–354 (2016)

    Google Scholar 

  20. Ahmed, J., Mahmood, T., Iqbal, Z., Shahzad, A., Ali, R.: Axisymmetric flow and heat transfer over an unsteady stretching sheet in power law fluid. J. Mol. Liquids 221, 386–393 (2016)

    Google Scholar 

  21. Hayat, T., Aziz, A., Muhammad, T., Ahmed, B.: On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. J. Magnet. Magnet. Mater. 408, 99–106 (2016)

    Google Scholar 

  22. Khan, M., Rahman, M.U.: Flow and heat transfer to modified second grade fluid over a nonlinear stretching sheet. AIP Adv. 5, 087157 (2015)

    Google Scholar 

  23. Shehzad, S.A., Waqas, M., Alsaedi, A., Hayat, T.: Flow and heat transfer over an unsteady stretching sheet in a Micro polar fluid with convective boundary conditions. J. Appl. Fluid Mech. 9, 1437–1445 (2016)

    Google Scholar 

  24. Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Hayat, T., Yasmeen, T.: Magnetohydrodynamic (MHD) mixed convection flow of micro polar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Trans. 102, 766–772 (2016)

    Google Scholar 

  25. Abbas, Z., Sheikh, M., Motsa, S.S.: Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching shrinking sheet with thermal radiation. Energy 95, 12–20 (2016)

    Google Scholar 

  26. Hayat, T., Khan, M.I., Waqas, M., Yasmeen, T., Alsaedi, A.: Viscous dissipation effect in flow of magneto nano fluid with variable properties. J. Mol. Liq. 22, 47–54 (2016)

    Google Scholar 

  27. Ali, M., Khan, W.A., Sultan, F., Shahzad, M.: Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface. Phys. A (2019). https://doi.org/10.1016/j.physa.2019.124012

    Article  Google Scholar 

  28. Khan, U., Zaib, A., Shah, Z., Baleanu, D., Sherif, E.S.M.: Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.01.107

    Article  Google Scholar 

  29. Akbar, N.S., Khan, Z.H., Haq, R.U., Nadeem, S.: Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Appl. Math. Mech. Engl. Ed. 35, 813–820 (2014)

    MathSciNet  Google Scholar 

  30. Akbar, N.S.: Blood flow analysis of Prandtl fluid model in tapered stenosed arteries. Ain Shams Eng. J. 5, 1267–1275 (2014)

    Google Scholar 

  31. Nadeem, S., Ijaz, S., Akbar, N.S.: Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. Int. Nano Lett. 3, 1–13 (2013)

    Google Scholar 

  32. Alsaedi, A., Batool, N., Yasmin, H., Hayat, T.: Convective heat transfer analysis on Prandtl fluid model with peristalsis. Appl. Bionics Biomech. 10, 197–208 (2013)

    Google Scholar 

  33. Akbar, N.S., Nadeem, S., Lee, C.H.: Peristaltic flow of a Prandtl fluid model in an asymmetric channel. Int. J. Phys. Sci. 7, 687–695 (2012)

    Google Scholar 

  34. Soomro, F.A., Haq, R.U., Khan, Z.H., Zhang, Q.: Passive control of nanoparticle due to convective heat transfer of Prandtl fluid model at the stretching surface. Chin. J. Phys. 55, 1561–1568 (2017)

    Google Scholar 

  35. Soomro, F.A., Khan, Z.H., Haq, R.U., Zhang, Q.: Heat transfer analysis of Prandtl liquid nano fluid in the presence of homogeneous-heterogeneous reactions. Results Phys. 10, 379–384 (2018)

    Google Scholar 

  36. Rehman, K.U., Khan, A.A., Malik, M.Y., Makinde, O.D.: Thermophysical aspects of stagnation point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non-Newtonian fluid model. J. Brazil Soc. Mech. Sci. Eng. 39(9), 3669–3682 (2017)

    Google Scholar 

  37. Makinde, O.D., Khan, W.A., Khan, Z.H.: Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proc. Instit. Mech. Eng. E J. Process Mech. Eng. 231(4), 695–703 (2017)

    Google Scholar 

  38. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Trans. 62, 526–533 (2013)

    Google Scholar 

  39. Malik, M.Y., Makinde, O.D.: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface. J. King Saud Univ. Sci. 30(4), 440–449 (2018)

    Google Scholar 

  40. Hamid, M., Usman, M., Haq, R.U., Tian, Z.F.: A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-020-01861-6

    Article  Google Scholar 

  41. Soid, S.K., Merkin, J., Ishak, A., Pop, I.: Axisymmetric stagnation-point flow and heat transfer due to stretching/shrinking vertical plate with surface second-order velocity slip. Meccanica 52, 139–151 (2017)

    MathSciNet  Google Scholar 

  42. Shoail, A., Uddin, M.J., Rashidi, M.M.: Numerical study of free convective flow of nanofluid over chemically reactive porous flat vertical plate with second-order slip model. J. Aerosp. Eng. 29, 1 (2016)

    Google Scholar 

  43. Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93, 253103 (2008)

    Google Scholar 

  44. Jing, L., Zheng, L.C., Liu, L.: MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. J. Mol. Liq. 221, 19–25 (2016)

    Google Scholar 

  45. Noor, M.F.M., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation-point flow of a micro polar nanofluid along a vertically stretching surface with slip effects. Meccanica 50, 2007–2022 (2015)

    MathSciNet  Google Scholar 

  46. Hamid, M., Usman, M., Khan, Z.H., Haq, R.U., Wang, W.: Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. Eur. Phys. J. Plus 133(12), 527 (2018)

    Google Scholar 

  47. Hamid, M., Zubair, T., Usman, M., Haq, R.U.: Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel. AIMS Math. 4(5), 1416 (2019)

    MathSciNet  Google Scholar 

  48. Hamid, M., Zubair, T., Usman, M., Khan, Z.H., Wang, W.: Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid. J. Comput. Des. Eng. 6(4), 584–592 (2019)

    Google Scholar 

  49. Carstens, S., Kuhl, D.: Higher-order accurate implicit time integration schemes for transport problem. Arch. Appl. Mech. 82, 1007–1039 (2012)

    MATH  Google Scholar 

  50. Hamid, M., Usman, M., Wang, W., Tian, Z.F.: A stable computational approach to analyze semi-relativistic behavior of fractional evolutionary problems. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22617

    Article  Google Scholar 

  51. Khan, W.A., Pop, I.: Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Trans. 53, 2477–2483 (2010)

    MATH  Google Scholar 

  52. Wang, C.Y.: Free convection on a vertical stretching surface. J. Appl. Math. Mech. (ZAMM) 69, 418–420 (1989)

    MATH  Google Scholar 

  53. Gorla, R.S.R., Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing. J. Appl. Sci. Res. 52, 247–257 (1994)

    MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the referees for their valuable suggestions that help improve the manuscript's content. The corresponding author (M. Hamid) is sincerely grateful to Fudan University for providing research opportunities through the Postdoctoral International Exchange Fellowship. China Postdoctoral Science Foundation supported this work (No. 2020M681135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feroz Ahmed Soomro or Muhammad Hamid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomro, F.A., Haq, R.U. & Hamid, M. Brownian motion and thermophoretic effects on non-Newtonian nanofluid flow via Crank–Nicolson scheme. Arch Appl Mech 91, 3303–3313 (2021). https://doi.org/10.1007/s00419-021-01966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01966-6

Keywords

Navigation