Skip to main content
Log in

A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this article, we numerically analyzed the MHD flow of a nanofluid in converging/diverging channels through the Galerkin approach. The walls are assumed to be stretchable. The governing equations of flow are reduced to nonlinear ODE system by using the appropriate nondimensionalized technique. The results are simulated numerically by means of Galerkin method. A detailed evaluation of outcomes obtained by Galerkin scheme with the fourth-order Runge–Kutta technique (RK-4) is available to support our numerical results. The significant effects of the various physical parameters are presented graphically. Prandtl numbers cause an increase in the temperature profile, while they cause a decrease in the concentration profile. The shrinking decreases the fluid velocity nearby the channel walls, while the stretching of diverging channel provides an enhancement in flow nearby the channel walls. An identical behavior is found for the convergent channel. The influence of Grashof numbers is negligible but effect of opposing flow forces is a little dominant than assisting flow forces. The comparative study with existing literature and RK-4 as well as convergence analysis indicates that the proposed method is an efficient mathematical tool to analyze the problems arising in mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Jeffery, G.B.L.: The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(172), 455–465 (1915)

    Article  Google Scholar 

  2. Hamel, G.: Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25, 34–60 (1916)

    MATH  Google Scholar 

  3. Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)

    Article  MathSciNet  Google Scholar 

  4. Mohyud-Din, S.T., Khan, U., Ahmed, N., Hassan, S.M.: Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl. Sci. 5(4), 1639–1664 (2015)

    Article  Google Scholar 

  5. Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017)

    Article  Google Scholar 

  6. Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)

    Article  Google Scholar 

  7. Duong, X.Q., Cao, N.V., Hong, S.W., Ahn, S.H., Chung, J.D.: Numerical study on the combined heat and mass recovery adsorption cooling cycle. Energy Technol. 6(2), 296–305 (2018)

    Article  Google Scholar 

  8. Usman, M., Zubair, T., Hamid, M., Haq, R.U., Wang, W.: Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Phys. Fluids 30(2), 023104 (2018)

    Article  Google Scholar 

  9. Usman, M., Soomro, F.A., Haq, R.U., Wang, W.: Effects of velocity and thermal slip on Casson nanofluid flow, heat and mass transfer over permeable inclined stretching cylinder. Int. J. Heat Mass Transf. 122, 1255–1263 (2018)

    Article  Google Scholar 

  10. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231, pp. 99–105. WHO, New York (1995)

    Google Scholar 

  11. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)

    Article  Google Scholar 

  12. Usman, M., Hamid, M., Khan, U., Mohyud-Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018)

    Article  Google Scholar 

  13. Mohyud-Din, S.T., Usman, M., Afaq, K., Hamid, M., Wang, W.: Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 34(7), 2330–2343 (2017)

    Article  Google Scholar 

  14. Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)

    Article  Google Scholar 

  15. Usman, M., Hamid, M., Mohyud-Din, S.T., Waheed, A., Wang, W.: Exploration of Uniform Heat Flux on the Flow and Heat Transportation of Ferrofluids along a Smooth Plate: Comparative Investigation. Int. J. Biomath. 11(2), 1850048 (2018)

    Article  MathSciNet  Google Scholar 

  16. Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21(4), 645–647 (1970)

    Article  Google Scholar 

  17. Nadeem, S., Haq, R.U.: Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)

    Article  Google Scholar 

  18. Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)

    Article  Google Scholar 

  19. Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)

    Article  Google Scholar 

  20. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)

    Article  Google Scholar 

  21. Noor, N.F., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)

    Article  MathSciNet  Google Scholar 

  22. Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)

    Article  Google Scholar 

  23. Çelik, İ, Öztürk, H.K.: Heat transfer and velocity in the squeezing flow between two parallel disks by Gegenbauer Wavelet Collocation Method. Arch. Appl. Mech. (2020). https://doi.org/10.33422/5th-ste.2019.08.446

    Article  Google Scholar 

  24. Bilal, M., Nazeer, M.: Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01798-w

    Article  Google Scholar 

  25. Bilal, M., Urva, Y.: Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01685-4

    Article  Google Scholar 

  26. El-Dabe, N.T., Abou-Zeid, M.Y., Mohamed, M.A.: ABD-Elmoneim MM: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. 13, 1–1 (2020)

    Google Scholar 

  27. Akram S, Razia A, Afzal F (2020) Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 1:23 https://doi.org/10.1007/s00419-020-01685-4.

  28. Abbaszadeh, M., Dehghan, M.: Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl. Numer. Math. 150, 274–294 (2020)

    Article  MathSciNet  Google Scholar 

  29. Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)

    Article  MathSciNet  Google Scholar 

  30. Usman, M., Hamid, M., Haq, R.U., Wang, W.: Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)

    Article  Google Scholar 

  31. Abbaszadeh, M., Dehghan, M.: Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl. Numer. Math. 154, 172–186 (2020)

    Article  MathSciNet  Google Scholar 

  32. Khan, Z.H., Usman, M., Zubair, T., Hamid, M., Haq, R.U.: Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 115703 (2020)

    Article  MathSciNet  Google Scholar 

  33. Abbaszadeh, M., Dehghan, M.: Numerical and analytical investigations for solving the inverse tempered fractional diffusion equation via interpolating element-free Galerkin (IEFG) method. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10116-z

    Article  Google Scholar 

  34. Abbaszadeh, M., Dehghan, M.: Direct meshless local Petrov–Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng. Anal. Bound. Elem. 118, 188–201 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (M. Hamid) acknowledges the support of Fudan University through the International Exchange Post-Doctoral Fellowship. This work was supported by China Postdoctoral Science Foundation (No. 2020M681135) and partially supported by the National Natural Science Foundation of China (No. 11872151). The corresponding author (M. Usman) is grateful to Peking University for providing support through the BOYA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Usman or Zhenfu Tian.

Ethics declarations

Conflict of interest

All the authors declare that there is no actual or potential conflict of interest including any financial, personal, or other relationships with other people or organizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Usman, M., Ul Haq, R. et al. A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Arch Appl Mech 91, 1907–1924 (2021). https://doi.org/10.1007/s00419-020-01861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01861-6

Keywords

Navigation