Skip to main content
Log in

Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present research work is dedicated to examine the heat and mass transport phenomenon due to unsteady MHD flow of Williamson nanofluid between the permeable channel with heat source/sink. The influence of buoyancy and thermal radiation effects are also considered for the present model. The flow equations are reduced to an equivalent nonlinear coupled partial differential equations (PDE) through suitable transformation. The numerical simulation is performed to attain the solution of the nonlinear system via the Crank-Nicolson finite difference scheme. The influence of various emerging parameters on velocity, temperature and concentration profiles are developed. The magnetic parameter plays the significant role to enhance the heat transfer rate but reduces the velocity profile. The velocity of the fluid increases gradually with respect to time and this influence is dominant at the center of the channel. Additionally, the velocity profile exhibits the increasing behavior by varying the Reynolds number for a small time. In the entire study it is analyzed that the temperature profile increases for increasing values of Reynolds, thermophoresis, Brownian motion and heat source numbers, while a low temperature profile is attained for Biot numbers. The thermophoresis and Brownian motion parameters provide the decreasing concentration profile however, an increasing result is noticed for Biot numbers. An increase in the values of Williamson parameter \( \Lambda\), illustrates the increase effects on the skin friction coefficient when \( \eta=1\) while it shows the decrease behavior at \( \eta=0\). The effects of the Reynolds number on streamlines pattern is presented. It is noticed that the higher values of Re affects the stream line pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Willey, New York, 1973)

  2. W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, R. Zou, Energy & Environmental Science 11, 1392 (2018)

    Article  Google Scholar 

  3. O.D. Makinde, Int. Commun. Heat Mass Transf. 32, 1411 (2005)

    Article  Google Scholar 

  4. S.T. Mohyud-Din, M. Usman, K. Afaq, M. Hamid, W. Wang, Eng. Comput. 34, 2330 (2017)

    Article  Google Scholar 

  5. M. Usman, T. Zubair, M. Hamid, R.U. Haq, W. Wang, Phys. Fluids 30, 023104 (2018)

    Article  ADS  Google Scholar 

  6. M. Usman, M. Hamid, T. Zubair, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 126, 1347 (2018)

    Article  Google Scholar 

  7. S.U.S. Choi, ASME FED 231, 99 (1995)

    Google Scholar 

  8. S.U.S. Choi, S.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  9. J. Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  10. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007)

    Article  Google Scholar 

  11. M. Usman, M. Hamid, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 123, 888 (2018)

    Article  Google Scholar 

  12. M. Hamid, M. Usman, T. Zubair, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 124, 706 (2018)

    Article  Google Scholar 

  13. M. Usman, R.U. Haq, M. Hamid, W. Wang, J. Mol. Liq. 249, 856 (2018)

    Article  Google Scholar 

  14. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013)

    Article  Google Scholar 

  15. W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 74, 285 (2014)

    Article  Google Scholar 

  16. N.F. Noor, R.U. Haq, S. Nadeem, I. Hashim, Meccanica 50, 2007 (2015)

    Article  MathSciNet  Google Scholar 

  17. B.J. Gireesha, M. Archana, R.R. Gorla, O.D. Makinde, Int. J. Numer. Methods Heat Fluid Flow 27, 2858 (2017)

    Google Scholar 

  18. R.V. Williamson, Ind. Eng. Chem. 21, 1108 (1929)

    Article  Google Scholar 

  19. D.V. Lyubimov, A.V. Perminov, J. Eng. Phys. Thermophys. 75, 920 (2002)

    Article  Google Scholar 

  20. T. Salahuddin, M.Y. Malik, A. Hussain, S. Bilal, M. Awais, J. Magn. & Magn. Mater. 401, 991 (2016)

    Article  ADS  Google Scholar 

  21. N.S. Akbar, S. Nadeem, C. Lee, Z.H. Khan, R.U. Haq, Results Phys. 3, 161 (2013)

    Article  ADS  Google Scholar 

  22. S. Bilal, M.Y. Malik, A. Hussain, M. Khan, Results Phys. 7, 204 (2017)

    Article  ADS  Google Scholar 

  23. C.H. Amanulla, N. Nagendra, A.R. Subba, O.A. Beg, A. Kadir, Heat Transf. Asian Res. 47, 286 (2018)

    Article  Google Scholar 

  24. J. Crank, P. Nicolson, Adv. Comput. Math. 6, 207 (1996)

    Article  MathSciNet  Google Scholar 

  25. F.A. Soomro, Z.H. Khan, R.U. Haq, Q. Zhang, Results Phys. 10, 379 (2018)

    Article  ADS  Google Scholar 

  26. U.M. Ascher, S.J. Ruuth, B.T. Wetton, SIAM J. Numer. Anal. 32, 797 (1995)

    Article  MathSciNet  Google Scholar 

  27. M.K. Kadalbajoo, A. Awasthi, Appl. Math. Comput. 182, 1430 (2006)

    MathSciNet  Google Scholar 

  28. D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 242, 670 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Usman, M., Khan, Z.H. et al. Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. Eur. Phys. J. Plus 133, 527 (2018). https://doi.org/10.1140/epjp/i2018-12322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12322-5

Navigation