Skip to main content
Log in

Nonlinear vibration of an elastically connected double Timoshenko nanobeam system carrying a moving particle based on modified couple stress theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the modified couple stress and non-classical Timoshenko beam theories, the nonlinear forced vibration of an elastically connected double nanobeam system subjected to a moving particle is assessed here. This system is assumed to be resting on an elastic medium. Hamilton’s principle and the Galerkin method are applied to govern the equations of system motion and corresponding boundary conditions and to solve these equations, respectively. The numerical study reveals that by applying the nonlinear and modified couple stress theories the system is predicted stiffer than what is obtained through linear and classical theories. To determine the effects of different parameters like the material length scale, the elastic stiffness modulus of the interlayer and medium, and the velocity of the moving particle on the system’s vibration, a parametric study is performed. The material length scale has a significant effect on the dynamic response of the system, indicating that the classical theory cannot predict the dynamic behavior of nanosize beam systems. The elastic stiffness modulus of both the interlayer and medium and the velocity of the moving particle have considerable effects on the dynamic deflections of the double nanobeam system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lun, F.-Y., Zhang, P., Gao, F.-B., Jia, H.-G.: Design and fabrication of micro-optomechanical vibration sensor. Weixi Jiagong Jishu/Microfabr. Technol. 120, 61–64 (2006)

    Google Scholar 

  2. Belardinelli, P., Ghatkesar, M.K., Staufer, U., Alijani, F.: Linear and non-linear vibrations of fluid-filled hollow microcantilevers interacting with small particles. Int. J. Non Linear Mech. 93, 30–40 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.016

    Article  Google Scholar 

  3. Karličić, D., Cajić, M., Adhikari, S.: Dynamic stability of a nonlinear multiple-nanobeam system. Nonlinear Dyn. 93, 1495–1517 (2018). https://doi.org/10.1007/s11071-018-4273-3

    Article  MATH  Google Scholar 

  4. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  5. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  6. Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  7. Shrotriya, P., Allameh, S.M., Lou, J., Buchheit, T., Soboyejo, W.O.: On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mech. Mater. 35, 233–243 (2003)

    Article  Google Scholar 

  8. Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  Google Scholar 

  9. Cao, Y., Nankivil, D.D., Allameh, S., Soboyejo, W.O.: Mechanical properties of Au films on silicon substrates. Mater. Manuf. Process. 22, 187–194 (2007). https://doi.org/10.1080/10426910601062271

    Article  Google Scholar 

  10. Al-Rub, R.K.A., Voyiadjis, G.: Determination of the material intrinsic length scale of gradient plasticity theory. Int. J. Multiscale Comput. Eng. 2, 377–400 (2004)

    Article  Google Scholar 

  11. Wang, W., Huang, Y., Hsia, K.J., Hu, K.X., Chandra, A.: A study of microbend test by strain gradient plasticity. Int. J. Plast. 19, 365–382 (2003)

    Article  Google Scholar 

  12. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  13. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  14. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  15. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  16. Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010). https://doi.org/10.1016/j.commatsci.2010.05.040

    Article  Google Scholar 

  17. Akbarzadeh Khorshidi, M., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016). https://doi.org/10.1016/j.ijmecsci.2016.03.006

    Article  Google Scholar 

  18. Hosseini Hashemi, S., Bakhshi Khaniki, H.: Vibration analysis of a timoshenko non-uniform nanobeam based on nonlocal theory: an analytical solution. Int. J. Nano Dimens. 8, 70–81 (2017)

    Google Scholar 

  19. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  20. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Google Scholar 

  21. Wang, L.: Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Phys. E Low Dimens. Syst. Nanostruct. 41, 1835–1840 (2009)

    Google Scholar 

  22. Khorshidi, M.A., Shariati, M.: Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J. Braz. Soc. Mech. Sci. Eng. 38, 2607–2619 (2016)

    Google Scholar 

  23. Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A., Hoorzad, H.: Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys. E Low Dimens. Syst. Nanostruct. 63, 223–228 (2014)

    Google Scholar 

  24. Salehipour, H., Nahvi, H., Shahidi, A.: Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Compos. Struct. 124, 283–291 (2015)

    Google Scholar 

  25. Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A., Shahriari, B.: Size-dependent nonlinear dynamic modeling and vibration analysis of piezo-laminated nanomechanical resonators using perturbation method. Arch. Appl. Mech. 90, 1659–1672 (2020). https://doi.org/10.1007/s00419-020-01678-3

    Article  Google Scholar 

  26. Şimşek, M.: Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys. E Low Dimens. Syst. Nanostruct. 43, 182–191 (2010). https://doi.org/10.1016/j.physe.2010.07.003

    Article  Google Scholar 

  27. Kiani, K.: Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys. E Low Dimens. Syst. Nanostruct. 42, 2391–2401 (2010). https://doi.org/10.1016/j.physe.2010.05.021

    Article  Google Scholar 

  28. Ghadiri, M., Rajabpour, A., Akbarshahi, A.: Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects. Appl. Math. Model. 50, 676–694 (2017). https://doi.org/10.1016/j.apm.2017.06.019

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong, Z., Qing-tian, D., Shao-hua, L.: Vibration of a single-walled carbon nanotube embedded in an elastic medium under a moving internal nanoparticle. Appl. Math. Model. 37, 6940–6951 (2013). https://doi.org/10.1016/j.apm.2013.02.020

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, L., Hu, Y., Li, X., Ling, L.: Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory. Microfluid. Nanofluidics 20, 76 (2016)

    Article  Google Scholar 

  31. Ghorbanpour Arani, A., Amir, S.: Nonlinear instability of coupled CNTs conveying viscous fluid. J. Solid Mech. 7, 96–120 (2015)

    Google Scholar 

  32. Ahangar, S., Rezazadeh, G., Shabani, R., Ahmadi, G., Toloei, A.: On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7, 327 (2011). https://doi.org/10.1007/s10999-011-9171-5

    Article  Google Scholar 

  33. Rajabi, K., Li, L., Hosseini-Hashemi, S., Nezamabadi, A.: Size-dependent nonlinear vibration analysis of Euler–Bernoulli nanobeams acted upon by moving loads with variable speeds. Mater. Res. Express 5, 15058 (2018)

    Article  Google Scholar 

  34. Şimşek, M.: Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50, 2112–2123 (2011). https://doi.org/10.1016/j.commatsci.2011.02.017

    Article  Google Scholar 

  35. Hosseini Hashemi, S., Bakhshi Khaniki, H.: Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J. Mech. 33, 559–575 (2017). https://doi.org/10.1017/jmech.2016.91

    Article  MATH  Google Scholar 

  36. Hashemi, S.H., Khaniki, H.B.: Dynamic response of multiple nanobeam system under a moving nanoparticle. Alex. Eng. J. 57, 343–356 (2018). https://doi.org/10.1016/j.aej.2016.12.015

    Article  Google Scholar 

  37. Rahmani, O., Norouzi, S., Golmohammadi, H., Hosseini, S.A.H.: Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects. Mech. Adv. Mater. Struct. 24, 1274–1291 (2017). https://doi.org/10.1080/15376494.2016.1227504

    Article  Google Scholar 

  38. Lü, L., Hu, Y., Wang, X.: Forced vibration of two coupled carbon nanotubes conveying lagged moving nano-particles. Phys. E Low Dimens. Syst. Nanostruct. 68, 72–80 (2015). https://doi.org/10.1016/j.physe.2014.12.021

    Article  Google Scholar 

  39. Ghorbanpour Arani, A., Roudbari, M.A., Kiani, K.: Vibration of double-walled carbon nanotubes coupled by temperature-dependent medium under a moving nanoparticle with multi physical fields. Mech. Adv. Mater. Struct. 23, 281–291 (2016). https://doi.org/10.1080/15376494.2014.952853

    Article  Google Scholar 

  40. Li, X., Li, L., Hu, Y., Deng, W., Ding, Z.: A refined nonlocal strain gradient theory for assessing scaling-dependent vibration behavior of microbeams. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 11, 517–527 (2017)

    Google Scholar 

  41. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  42. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  Google Scholar 

  43. Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)

    Article  Google Scholar 

  44. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  45. Ansari, R., Gholami, R., Darabi, M.A.: A nonlinear Timoshenko beam formulation based on strain gradient theory. J. Mech. Mater. Struct. 7, 195–211 (2012)

    Article  Google Scholar 

  46. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68, 87–92 (2000)

    Article  Google Scholar 

  47. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010). https://doi.org/10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C.M., Tan, V., Zhang, Y.: Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)

    Article  Google Scholar 

  49. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008). https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  50. Stojanović, V., Kozić, P.: Vibrations and Stability of Complex Beam Systems. Springer, Berlin (2015)

    MATH  Google Scholar 

  51. Şimşek, M.: Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos. Struct. 92, 2532–2546 (2010)

    Google Scholar 

  52. Arash, B., Wang, Q.: Vibration of single-and double-layered graphene sheets. J. Nanotechnol. Eng. Med. 2, 011012 (2011)

  53. Elishakoff, I., Dujat, K., Muscolino, G., Bucas, S., Natsuki, T., Wang, C.M., Pentaras, D., Versaci, C., Storch, J., Challamel, N.: Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact. Wiley, London (2013)

    Google Scholar 

  54. Khorshidi, M.A.: The material length scale parameter used in couple stress theories is not a material constant. Int. J. Eng. Sci. 133, 15–25 (2018)

    Google Scholar 

  55. Wang, C.M., Zhang, Z., Challamel, N., Duan, W.H.: Calibration of Eringen’s small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model. J. Phys. D Appl. Phys. 46, 345501 (2013)

    Article  Google Scholar 

  56. Duan, W.H., Challamel, N., Wang, C.M., Ding, Z.: Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J. Appl. Phys. 114, 104312 (2013)

    Article  Google Scholar 

  57. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The author of this manuscript has directly participated in the conceptualization, methodology, validation, formal analysis, and writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Hadian Jazi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian Jazi, S. Nonlinear vibration of an elastically connected double Timoshenko nanobeam system carrying a moving particle based on modified couple stress theory. Arch Appl Mech 90, 2739–2754 (2020). https://doi.org/10.1007/s00419-020-01746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01746-8

Keywords

Navigation