Skip to main content
Log in

Topology of corner vortices in the lid-driven cavity flow: 2D vis a vis 3D

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

All the previous studies on the cavity flow are confined to either the study of its 2D or its 3D configuration in isolation. In this study, we endeavour to gain some physical insight into the corner vortices from the perspective of the flow topology in the 2D vis a vis 3D driven cavity by employing some recent developments in the field of topological fluid dynamics. The computed flow is post-processed to identify critical points in the flow field leading to the prediction of separation, reattachment and vortical structures in the flow. The limit cycles in the plane of symmetry of the 3D flow representing the vortices are found to be stable ones. The Poincaré–Bendixson formula is used to validate the computed flow, i.e., the possible number of critical points in the 2D cavity identified by us from the computation. The topology of the corner vortices in actual 3D flow and its 2D idealization has also been compared in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bakker, P.G.: Bifurcations in flow patterns. Ph.D. thesis, Technical University of Delft, Netherlands (1989)

  2. Biswas, S., Kalita, J.C.: Moffatt eddies in the lid driven cavity flow. J. Phys: Conf. Ser. 759, 012081 (2016)

    Google Scholar 

  3. Biswas, S., Kalita, J.C.: Moffatt eddies in the driven cavity: a quantification studies by an HOC approach. Comput. Math. Appl. 76, 471–487 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bruneau, C.-H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)

    Article  Google Scholar 

  5. Délery, J.: Three-dimensional separated flow topology. ISTE Ltd and John Wiley and Sons, Inc. (2013)

  6. Deshpande, M.D., George Milton, S.: Kolmogorov scales in a driven cavity flow. Fluid Dyn Res. 22, 359–381 (1998)

    Article  MathSciNet  Google Scholar 

  7. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs (1976)

    MATH  Google Scholar 

  8. Erturk, E., Korke, T.C., Gökcöl, G.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48(7), 747–774 (2005)

    Article  Google Scholar 

  9. Fellouah, H., Castelain, C., Moctar, O.E., Peerhossaini, H.: A numerical study of dean instability in non-Newtonian fluids. J. Fluids Eng.: Trans. ASME 128(1), 34–41 (2005)

    Article  Google Scholar 

  10. Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  Google Scholar 

  11. Haller, G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2014)

    Book  Google Scholar 

  13. Huang, Z., Olson, J.A., Kerekes, R.J., Green, S.I.: Numerical simulation of the flow around rows of cylinders. Comput. Fluids 35(5), 485–491 (2006)

    Article  Google Scholar 

  14. Kalita, J.C., Dass, A.K., Nidhi, N.: An efficient transient Navier–Stokes solver on compact nonuniform space grids. J. Comput. Appl. Math. 214(1), 148–162 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kalita, J.C., Dalal, D.C., Dass, A.K.: A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients. Int. J. Numer. Methods Fluids 38(12), 1111–1131 (2002)

    Article  MathSciNet  Google Scholar 

  16. Kalita, J.C., Dalal, D.C., Dass, A.K.: Fully compact higher order computation of steady-state natural convection in a square cavity. Phys. Rev. E 64(6), 066703 (2001)

    Article  Google Scholar 

  17. Kalita, J.C.: A super-compact higher order scheme for the unsteady 3D incompressible viscous flows. Comput. Appl. Math. 33(3), 717–738 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kalita, J.C., Biswas, S., Panda, S.: Finiteness of corner vortices. Z. Angew. Math. und Phys. 69, 37 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ma, T., Wang, S.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics. Mathematical Surveys and Monographs, Vol. 119, American Mathematical Society (2005)

  20. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)

    Article  Google Scholar 

  21. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15, 1787–1806 (1972)

    Article  Google Scholar 

  22. Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125–155 (1987)

    Article  Google Scholar 

  23. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New Delhi (1976)

    MATH  Google Scholar 

  24. Sears, W.R.: The boundary layer of yawed cylinders. J. Aeronaut. Sci. 15, 49–52 (1948)

    Article  MathSciNet  Google Scholar 

  25. Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32(1), 93–136 (2000)

    Article  MathSciNet  Google Scholar 

  26. Spotz, W.F., Carey, G.F.: Higher-order compact scheme for the steady stream-function vorticity equations. Int. J. Numer. Methods Eng. 38, 3497–3512 (1995)

    Article  Google Scholar 

  27. Surana, A., Grunberg, O., Haller, G.: Exact theory of three-dimensional flow separation. Part 1. Steady separation. J. Fluid Mech. 564(10), 57–103 (2006)

    Article  MathSciNet  Google Scholar 

  28. Taha, T., Cui, Z.F.: CFD modelling of slug flow in vertical tubes. Chem. Eng. Sci. 61(2), 676–687 (2006)

    Article  Google Scholar 

  29. Tyson, J.J., Strogatz, S.H.: The differential geometry of scroll waves. Int. J. Bifurc. Chaos 4, 723–744 (1991)

    Article  MathSciNet  Google Scholar 

  30. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vortical Flows. Springer, Berlin (2015)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to the anonymous reviewers for their valuable comments which went a long way towards improving the quality of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Biswas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Kalita, J.C. Topology of corner vortices in the lid-driven cavity flow: 2D vis a vis 3D. Arch Appl Mech 90, 2201–2216 (2020). https://doi.org/10.1007/s00419-020-01716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01716-0

Keywords

Navigation