Skip to main content
Log in

Numerical Solutions of Steady Flow in a Three-Sided Lid-Driven Square Cavity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper reports a numerical investigation of the steady two-dimensional incompressible flow in a three-sided lid-driven cavity of unit aspect ratios (Г = 1). The two opposite horizontal walls move in parallel and antiparallel motions, while the left vertical sidewall moves upwards and downwards. The right vertical sidewall is stationary. A detailed analysis of the fluid flow has been carried out with the finite volume method for a Reynolds number up to 5000 using a fine mesh resolution, whereas the coupled algorithm has been employed to handle the pressure–velocity coupling. The results are displayed in terms of stream-function contours, fluid properties, and velocity profiles and have indicated a good agreement with the set of literature. Among the three driving processes considered, a most complex topological flow pattern has been shown with the antiparallel-downwards case. This is embodied by a significant amount of robustness induced in three opposing directions leading to multiple changes of streamline patterns. This is accompanied by high rotation rates of secondary vortices in the near-wall regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

Code Availability

Ansys Fluent.

Abbreviations

H :

Physical height of the cavity [m]

p :

Pressure [N m2]

Re :

Reynolds number

u, v :

Velocity components [m s1]

U, V :

Dimensionless velocity components

U 0 :

Initial velocity components

x, y :

Cartesian coordinates [m]

X, Y :

Dimensionless coordinates

α :

Under-relaxation factor

Г :

Cavity aspect ratio

μ :

Fluid dynamic viscosity [Pa s]

ρ :

Fluid density [kg/m3]

ψ :

Stream-function [m2/s]

Ψ :

Dimensionless stream-function

ω :

Vorticity [s1]

BR:

Bottom right secondary vortex

BL:

Bottom left secondary vortex

CFL:

Flow courant number

PV:

Primary vortex

SV:

Secondary vortex

1-6:

Hierarchy of vortices’ appearance

References

  1. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151 (1966)

    Article  Google Scholar 

  2. Shankar, N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuhlmann, H.C., Romanò, F.: The lid-driven cavity. In: Gelfgat, A. (ed.) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pp. 233–309. Springer, Cham (2019)

    Chapter  Google Scholar 

  4. Aidun, C.K., Triantafillopoulos, N.G., Benson, J.D.: Global stability of a lid-driven cavity with throughflow: flow visualization studies. Phys. Fluids A. 3, 2081–2091 (1991)

    Article  Google Scholar 

  5. Malone, B.: An experimental investigation of roll coating phenomena. Ph.D. thesis, University of Leeds (1992)

  6. Leong, C.W., Ottino, J.M.: Experiments on mixing due to chaotic advection in a cavity. J. Fluid Mech. 209, 463–499 (1989)

    Article  MathSciNet  Google Scholar 

  7. Alleborn, N., Raszillier, H., Durst, F.: Lid-driven cavity with heat and mass transport. Int. J. Heat Mass Transf. 42, 833–853 (1999)

    Article  MATH  Google Scholar 

  8. Zdanski, P., Ortega, M.A., Nide, G.C.R., Fico, J.R.: Numerical study of the flow over shallow cavities. Comput. Fluids. 32, 953–974 (2003)

    Article  MATH  Google Scholar 

  9. Canedo, E.L., Denson, C.D.: Flow in a driven cavity with a free surface. AIChE J. 35, 129–138 (1989)

    Article  Google Scholar 

  10. Ghia, U., Ghia, K.N., Shin, C.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  11. Schreiber, R., Keller, H.: Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310–333 (1983)

    Article  MATH  Google Scholar 

  12. Botella, O., Peyret, R.: Benchmark spectral results on the lid driven cavity flow. Comput. Fluids. 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  13. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier Stokes equations: streamfunction–velocity formulation. J. Comput. Phys. 207, 52–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids. 60, 275–294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wahba, E.M.: Steady flow simulations inside a driven cavity up to Reynolds number 35000. Comput. Fluids. 66, 85–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. AbelMigid, T.A., Saqr, K.M., Kotb, M.A., Aboelfarag, A.A.: Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code. Alex. Eng. J. 56, 123–135 (2016)

    Article  Google Scholar 

  17. Azzouz, E.A., Houat, S., Benhizia, O.: Numerical study of steady flow inside a lid-driven square cavity for Reynolds number up to 50000, 23eme Congès Français de Mécanique, Lille, Aug. 2017, France.

  18. Ramanan, N., Homsy, G.M.: Linear stability of lid-driven cavity flow. Phys. Fluids. 6, 2690–2701 (1994)

    Article  MATH  Google Scholar 

  19. Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids. 27, 139–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Albensoeder, S., Kuhlmann, H.C., Rath, H.J.: Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121–135 (2001)

    Article  MATH  Google Scholar 

  21. Theofilis, V., Duck, P.W., Owen, J.: Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fortin, A., Jardak, M., Gervais, J., Pierre, R.: Localization of Hopf bifurcation in fluid flow problems. Int. J. Numer. Methods Fluids. 24, 1185–1210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng, Y.-H., Shiau, Y.-H., Hwang, R.R.: Transition in a 2-D lid-driven cavity flow. Comput. Fluids. 32, 337–352 (2003)

    Article  MATH  Google Scholar 

  24. Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids. 35, 326–348 (2006)

    Article  MATH  Google Scholar 

  25. Murdock, J.R., Ickes, J.C., Yang, S.L.: Transition flow with an incompressible lattice Boltzmann method. AAM M. 9, 1271–1288 (2017)

    MathSciNet  MATH  Google Scholar 

  26. An, B., Mellibovsky, F., Bergadà, J.M., Sang, W.M.: Towards a better understanding of wall-driven square cavity flows using the Lattice Boltzmann method. Appl. Math. Model. 82, 469–486 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koseff, J.R., Street, R.L.: Visualization studies of a shear driven three-dimensional recirculating flow. J. Fluids Eng. 106, 21–27 (1984)

    Article  Google Scholar 

  28. Koseff, J.R., Street, R.L.: On end wall effects in a lid-driven cavity flow. J. Fluids Eng. 106, 385–389 (1984)

    Article  Google Scholar 

  29. Prasad, A.K., Koseff, J.R.: Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A. Fluid Dyn. 1, 208–218 (1989)

    Article  Google Scholar 

  30. Kuhlmann, H.C., Wanschura, M., Rath, H.J.: Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267–299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, S., Tolke, J., Krafczyk, M.: A new method for the numerical solution ofvorticity–streamfunction formulations. Comput. Methods Appl. Mech. Eng. 198, 367–376 (2008)

    Article  MATH  Google Scholar 

  32. Perumal, D.A., Dass, A.K.: Simulation of incompressible flows in two-sided lid–driven square cavities, Part II. LBM. CFD Lett. 2, 25–38 (2010)

    Google Scholar 

  33. Mendu, S.S., Das, P.: Flow of power-law fluids in a cavity driven by the motion of two facing lids—a simulation by lattice Boltzmann method. J. Non-Newton. Fluid mech. 175–176, 10–24 (2012)

    Article  Google Scholar 

  34. Perumal, D.A.: Simulation of flow in two-sided lid-driven deep cavities by finite difference method. JASTFM. 6, 1–6 (2012)

    MathSciNet  Google Scholar 

  35. Arun, S., Satheesh, A.: Analysis of flow behaviour in a two sided lid driven cavity using lattice Boltzmann technique. Alex. Eng. J. 54, 795–806 (2015)

    Article  Google Scholar 

  36. Azzouz, E.A., Houat, S.: Numerical analysis and explore of asymmetrical fluid flow in a two-sided lid-driven cavity. J. Mech. Eng. Sci. 14(3), 7269–7281 (2020)

    Article  Google Scholar 

  37. Azzouz, E.A., Houat, S.: Asymmetrical flow driving in two-sided lid-driven square cavity with antiparallel wall Motion. Matec web conf., 330 (2020).

  38. Albensoeder, S., Kuhlmann, H., Rath, H.: Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities. Theor. Comput. Fluid Dyn. 14, 223–241 (2001)

    Article  MATH  Google Scholar 

  39. Lemée, T., Kasperski, G., Labrosse, G., Narayanan, R.: Multiple stable solutions in the 2d symmetrical two-sided square lid-driven cavity. Comput. Fluids. 119, 204–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Prasad, C., Dass, A.K.: Use of an HOC scheme to determine the existence of multiple steady states in the antiparallel lid-driven flow in a two-sided square cavity. Comput. Fluids. 140, 297–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Perumal, D.A.: Lattice Boltzmann computation of multiple solutions in a double sided square and rectangular cavity flows. Therm. Sci. Eng. Prog. 6, 48–56 (2018)

    Article  Google Scholar 

  42. Kuhlmann, H.C., Wanschura, M., Rath, H.J.: Elliptic instability in two-sided lid-driven cavity flow. Eur. J. Mech. B Fluids. 17, 561–569 (1998)

    Article  MATH  Google Scholar 

  43. Chen, K.T., Tsai, C.C., Luo, W.J., Chen, C.N.: Multiplicity of steady solutions in a two-sided lid-driven cavity with different aspect ratios. Theor. Comput. Fluid Dyn. 27, 767–776 (2013)

    Article  Google Scholar 

  44. Chen, K.T., Tsai, C.C., Lu, C.W., Luo, W.J., Chen, C.H.: Aspect ratio effect on multiple flows solution in a two-sided parallel motion lid-driven cavity. J. Mech. 31, 153–160 (2015)

    Article  Google Scholar 

  45. An, B., Bergadà, J.M., Mellibovsky, F., Sang, W.M.: New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers. Comput. Math. Appl. 79, 1718–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Azzouz, E.A., Houat, S., Dellil, A.Z.: Numerical assessment of turbulent flow driving in a two-sided lid-driven cavity with antiparallel wall motion. DDF. 406, 133–148 (2021)

    Article  Google Scholar 

  47. Wahba, E.M.: Multiplicity of states for two-sided and four-sided lid driven cavity flows. Comput. Fluids. 38, 247–253 (2009)

    Article  MATH  Google Scholar 

  48. Perumal, D.A., Dass, A.K.: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by the Lattice Boltzmann method. Comput. Math Appl. 61, 3711–3721 (2001)

    Article  MATH  Google Scholar 

  49. Chen, K.T., Tsai, C.C., Luo, W.J.: Multiplicity flow solutions in a four-sided lid-driven cavity. Appl. Mech. Mater. 368, 838–843 (2013)

    Google Scholar 

  50. Kamel, A.G., Haraz, E.H., Hanna, S.N.: Numerical simulation of three-sided lid-driven square cavity. Eng. Rep. 2:e12151 (2020)

  51. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  52. Ghobadian, A., Vasquez, S.A.: A general purpose implicit coupled algorithm for the solution of eulerian multiphase transport equation. In: International Conference on Multiphase Flow, Leipzig, Germany (2007)

  53. Caretto, L.S., Curr, R.M., Spalding, D.B.: Two numerical methods for three-dimensional boundary layers. Comput. Methods Appl. Mech. Eng. 1, 39–57 (1972)

    Article  MATH  Google Scholar 

  54. Darwish, M., Sraj, I., Moukalled, F.: A coupled incompressible flow solver on structured grids. Numer Heat Transf. B: Fundam. 52, 353–371 (2007)

    Article  MATH  Google Scholar 

  55. Darwish, M., Sraj, I., Moukalled, F.: A coupled incompressible flow solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys. 228, 180–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to the reviewers for the time and consecrated efforts. The authors wish also to acknowledge the helpful technical support of Professor Dellil Ahmed Zineddine from University of Mohamed Ben Ahmed Oran2 (IMSI).

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The authors conducted the numerical investigation which also concern the writing and editing of the paper. Professor Houat Samir gave the final approval for publication.

Corresponding author

Correspondence to El Amin Azzouz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 7, 8, 9, 10, 11 and 12.

Table 7 Results for U-velocity through the vertical centerline of the cavity
Table 8 Results for V-velocity through the horizontal centerline of the cavity
Table 9 Results for U-velocity through the vertical centerline of the cavity
Table 10 Results for V-velocity through the horizontal centerline of the cavity
Table 11 Results for U-velocity through the vertical centerline of the cavity
Table 12 Results for V-velocity through the vertical centerline of the cavity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzouz, E.A., Houat, S. Numerical Solutions of Steady Flow in a Three-Sided Lid-Driven Square Cavity. Int. J. Appl. Comput. Math 8, 118 (2022). https://doi.org/10.1007/s40819-022-01314-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01314-4

Keywords

Navigation