Skip to main content
Log in

A codimension two bifurcation in a railway bogie system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive analysis is presented to investigate a codimension two bifurcation that exists in a nonlinear railway bogie dynamic system combining theoretical analysis with numerical investigation. By using the running velocity V and the primary longitudinal stiffness \(K_{1x}\) as bifurcation parameters the first and second Lyapunov coefficients are calculated to determine which kind of Hopf bifurcation can happen and how the system states change with the variance of the bifurcation parameters. It is found that multiple solution branches both stable and unstable coexist in a range of the bifurcation parameters which can lead to jumps in the lateral oscillation amplitude of the railway bogie system. Furthermore, reduce the values of the bifurcation parameters gradually. Firstly, the supercritical Hopf bifurcation turns into a subcritical one with multiple limit cycles both stable and unstable near the Hopf bifurcation point. With a further reduction in the bifurcation parameters two saddle-node bifurcation points emerge, resulting in the loss of the stable limit cycle between these two bifurcation points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kingel, W.: Über den Lauf der Eisenbahnwagen auf gerader Bahn. Organ für die Fortchritte des Eisenbahnwesens in technischer Beziehung. Neue Folge 20(4), 113–123 (1883)

    Google Scholar 

  2. Huilgol, R.R.: Hopf-Friedrichs bifurcation and the hunting of a railway axle. Q. J. Appl. Mech. 36(1), 85–94 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Cooperrider, N.K.: The hunting behavior of conventional railway trucks. J. Eng. Ind. 94(2), 752–761 (1972)

    Article  Google Scholar 

  4. True, H.: Railway vehicle chaos and asymmetric hunting. Veh. Syst. Dyn. 20(sup1), 625–637 (1992)

    Article  Google Scholar 

  5. Isaksen, P., True, H.: On the ultimate transition to chaos in the dynamics of Cooperrider’s bogie. Chaos Solitons Fractals 8(4), 559–581 (1997)

    Article  MATH  Google Scholar 

  6. Polach, O.: On non-linear methods of bogie stability assessment using computer simulations. Inst. Mech. Part F J. Rail Rapid Transit 220(1), 13–27 (2006)

    Article  Google Scholar 

  7. Polach, O.: Characteristic parameters of nonlinear wheel/rail contact geometry. Veh. Syst. Dyn. 48(S1), 19–36 (2010)

    Article  Google Scholar 

  8. Polach, O., Kaiser, I.: Comparison of methods analyzing bifurcation diagram and hunting of complex rail vehicle models. J. Comput. Nonlinear Dyn. 7(4), 041005 (2012)

    Article  Google Scholar 

  9. True, H., Jensen, J.: Chaos and asymmetry in railway vehicle dynamics. Period. Polytechn. Ser. Transp. Eng. 22(1), 55–68 (1994)

    Google Scholar 

  10. Gao, X.J., True, H., Li, Y.H.: Lateral dynamic features of a railway vehicle. Inst. Mech. Part F J. Rail Rapid Transit 230(3), 909–923 (2016)

    Article  Google Scholar 

  11. Petersen, D., Hoffmann, M.: Curving dynamics of railway vehicles. Report, The Technical University of Denmark, Denmark (2002)

  12. True, H., Hansen, T.G. and Lundell, H.: On the quasi-stationary curving dynamics of a railroad truck. In: Proceedings of the 2005 ASME/IEEE Joint Rail Conference, American Society of Mechanical Engineers, pp 131–138 (2005)

  13. Rezvani, M., Mazraeh, A.: Dynamics and stability analysis of a freight wagon subjective to the railway track and wheelset operational conditions. Eur. J. Mech. A/Solids 61, 22–34 (2017)

    Article  Google Scholar 

  14. De Pater, A.D.: The approximation determination of the hunting movement of a railway vehicle by aid of the method of Krylov and Bogoljubov. Appl. Sci. Res. 10(1), 205–228 (1961)

    Article  MATH  Google Scholar 

  15. Law, E.H., Brand, R.S.: Analysis of the nonlinear dynamics of a railway vehicle wheelset. Dyn. Syst. Meas. Control 95, 28–35 (1973)

    Article  Google Scholar 

  16. Knudsen, C., Feldberg, R., Jaschinski, A.: Nonlinear dynamic phenomena in the behavior of a railway wheelset model. Nonlinear Dyn. 2(5), 389–404 (1991)

    Article  Google Scholar 

  17. Kaas-Petersen, C.: PATH-User’s Guide. Department of Applied Mathematical Studies and Centre for Nonlinear Studies, University of Leeds, Leeds (1987)

    Google Scholar 

  18. Zeng, J.: Numerical computations of the hunting bifurcation and limit cycles for railway vehicle system. J. China Railw. Soc. 15(3), 13–18 (1996)

    MathSciNet  Google Scholar 

  19. Gao, X.J.: The “resultant bifurcation diagram” method and its application to bifurcation behaviors of a symmetric railway bogie system. Nonlinear Dyn. 70(1), 363–380 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kalker, J.J.: A fast algorithm for the simplified theory of rolling contact. Int. J. Veh. Styst. Dyn. 11(1), 1–13 (1982)

    Article  Google Scholar 

  21. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, London (2007)

    Book  MATH  Google Scholar 

  22. von Wagner, U.: Nonlinear dynamic behaviour of a railway wheelset. Veh. Syst. Dyn. 47(5), 627–640 (2009)

    Article  Google Scholar 

  23. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  24. Wickens, A.H.: The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. Int. J. Solids Struct. 1(3), 319–334 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Railway Corporation under Grant No. YS2016J-40 and the Chinese Scholarship Council (CSC) Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Zhang.

Appendix: Description and values of the railway bogie system parameters

Appendix: Description and values of the railway bogie system parameters

Parameter

Description

Value

\(M_{t}\)

Mass of the bogie frame

2056 kg

\(J_{tz}\)

Yaw moment of inertia of the bogie frame

\(3800~\mathrm{kg\,{m}}^2\)

\(M_{w}\)

Mass of the wheelset

1627 kg

\(J_{wz}\)

Yaw moment of inertia of the wheelset

\(830~\mathrm{kg\,{m}}^2\)

\(K_{1x}\)

Primary longitudinal stiffness (per axle box)

\(K_{1y}\)

Primary lateral stiffness (per axle box),

\(7.0~\mathrm{MN\,{m}}^{-1}\)

\(C_{1x}\)

Primary longitudinal damper (per axle box)

\(0.0~\mathrm{MN\,{s}\,{m}}^{-1}\)

\(C_{1y}\)

Primary lateral damper (per axle box),

\(0.0~\mathrm{MN\,{s}\,{m}}^{-1}\)

\(K_{2x}\)

Secondary longitudinal stiffness (per side of bogie)

\(0.133~\mathrm{MN\,{m}}^{-1}\)

\(K_{2y}\)

Primary lateral stiffness (per side of bogie),

\(0.133~\mathrm{MN\,{m}}^{-1}\)

\(C_{2x}\)

Primary longitudinal damper (per side of bogie)

\(0.0~\mathrm{MN\,{s}\,{m}}^{-1}\)

\(C_{2y}\)

Primary lateral damper (per side of bogie),

\(0.015~\mathrm{MN\,{s}\,{m}}^{-1}\)

\(r_0\)

Centered wheel rolling radius

0.46 m

b

Half of the rolling cycle gauge

0.7465 m

\(b_1\)

Half of the swing arm

1.02 m

\(b_2\)

Half distance of the secondary springs

0.95 m

\(b_3\)

Half distance of the secondary dampers

1.275 m

l

Half of the axle distance

1.25 m

v

Running speed of the bogie

\(f_{11}\)

Longitudinal creep coefficient

12 MN

\(f_{22}\)

Lateral creep coefficient

12 MN

W

Axle load

103.936 kN

\(\lambda \)

Conicity of the wheel when \(y_{wi}=0\)

0.2

\(\delta _1\)

Nonlinear coefficient of wheel–rail contact force

\(-1.6\times 10^{11}~\mathrm{N\,{m^{-3}}}\)

\(\delta _2\)

Nonlinear coefficient of wheel–rail contact force

\(1.6\times 10^{15}~\mathrm{N\,{m^{-5}}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., True, H. & Dai, H. A codimension two bifurcation in a railway bogie system. Arch Appl Mech 88, 391–404 (2018). https://doi.org/10.1007/s00419-017-1314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1314-1

Keywords

Navigation