Skip to main content
Log in

Critical stresses estimation by crystal viscoplasticity modeling of rate-dependent anisotropy of Al-rich TiAl alloys at high temperature

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Determining critical stresses for different slip systems is one of the most important parts in crystal plasticity modeling of anisotropy. However, the task of finding individual critical resolved shear stress (CRSS) for every single slip system, if not impossible, is formidable and a delicate one especially if the microstructure is very complex. Slip family-based, mechanism-based and morphology-based (e.g., phase interface) slip systems classification and hence determining CRSS consistent with experimental measurements are often used in crystal plasticity. In this work, a novel approach to determining CRSS at high homologous temperature has been proposed by crystal plasticity modeling of rate-dependent anisotropy. Two-internal-variable-based phenomenological crystal viscoplasticity model is adopted for simulating isothermal, two-phase, single-crystal-like Al-rich lamellar Ti–61.8at.%Al binary alloy at high-temperature compression state (\(1050\,^\circ \hbox {C}\)) by employing finite strain and finite rotation framework. To the best of authors’ knowledge, this is the first micromechanical modeling attempt with long-period superstructures. Conventional approaches related to CRSS estimation are also compared with the proposed one. Our material parameters are based on calibrating three different sets of compressive stain rate-controlled plasticity data taken from the loading of two different lamellar directions. It is revealed that the proposed approach works fine for rate-dependent anisotropy modeling, while other conventional approaches highly under- or overestimate available anisotropic experimental behavior of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agnew, S.R., Duygulu, O.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21(6), 1161–1193 (2005)

    Article  MATH  Google Scholar 

  2. Nakano, T., Hayashi, K., Umakoshi, Y., Chiu, Y.L., Veyssiere, P.: Effects of Al concentration and resulting long-period superstructures on the plastic properties at room temperature of Al-rich TiAl single crystals. Philos. Mag. 85(22), 2527–2548 (2005)

    Article  Google Scholar 

  3. Oesterle, W., Bettge, D., Fedelich, B., Klingelhoeffer, H.: Modelling the orientation and direction dependence of the critical resolved shear stress of nickel-base superalloy single crystals. Acta Mater. 48(3), 689–700 (2000)

    Article  Google Scholar 

  4. Zupan, M., Hemker, K.J.: Yielding behavior of aluminum-rich single crystalline \(\gamma \)-TiAl. Acta Mater. 51(20), 6277–6290 (2003)

    Article  Google Scholar 

  5. Werwer, M., Cornec, A.: The role of superdislocations for modeling plastic deformation of lamellar TiAl. Int. J. Plast. 22(9), 1683–1698 (2006)

    Article  MATH  Google Scholar 

  6. Sanchez-Martin, R., Perez-Prado, M.T., Segurado, J., Bohlen, J., Gutierrez-Urrutia, I., Llorca, J., Molina-Aldareguia, J.M.: Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Mater. 71, 283–292 (2014)

    Article  Google Scholar 

  7. Li, H., Mason, D.E., Bieler, T.R., Boehlert, C.J., Crimp, M.A.: Methodology for estimating the critical resolved shear stress ratios of \(\alpha \)-phase Ti using EBSD-based trace analysis. Acta Mater. 61(20), 7555–7567 (2013)

    Article  Google Scholar 

  8. Herrera-Solaz, V., Hidalgo-Manrique, P., Perez-Prado, M.T., Letzig, D., Llorca, J., Segurado, J.: Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater. Lett. 128, 199–203 (2014)

    Article  Google Scholar 

  9. Hutchinson, W.B., Barnett, M.R.: Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other HCP metals. Scr. Mater. 63(7), 737–740 (2010)

    Article  Google Scholar 

  10. Hamelin, C.J., Diak, B.J., Pilkey, A.K.: Multiscale modelling of the induced plastic anisotropy in BCC metals. Int. J. Plast. 27(8), 1185–1202 (2011)

    Article  MATH  Google Scholar 

  11. Grujicic, M., Batchu, S.: A crystal plasticity materials constitutive model for polysynthetically-twinned \(\gamma \text{-TiAl } + \alpha _2 \text{-Ti }_{3} \text{ Al }\) single crystals. J. Mater. Sci. 36, 2851–2863 (2001)

    Article  Google Scholar 

  12. Nitz, A., Nembach, E.: Critical resolved shear stress anomalies of the \(\text{ L1 }_{2}\)-long-range ordered \(\gamma \)-phase of the superalloy NIMONIC 105. Mater. Sci. Eng. A 263(1), 15–22 (1999)

    Article  Google Scholar 

  13. Kumar, M.A., Beyerlein, I.J., Tome, C.N.: Effect of local stress fields on twin characteristics in HCP metals. Acta Mater. 116, 143–154 (2016)

    Article  Google Scholar 

  14. Lebensohn, R., Uhlenhut, H., Hartig, C., Mecking, H.: Plastic flow of \(\gamma \)-TiAl-based polysynthetically twinned crystals: micromechanical modeling and experimental validation. Acta Mater. 46(13), 4701–4709 (1998)

    Article  Google Scholar 

  15. Naumenko, K., Altenbach, H.: Modeling High Temperature Materials Behavior for Structural Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models, vol. 28. Springer, Cham (2016)

    Google Scholar 

  16. Huh, J., Huh, H., Lee, C.S.: Effect of strain rate on plastic anisotropy of advanced high strength steel sheets. Int. J. Plast. 44, 23–46 (2013)

    Article  Google Scholar 

  17. Meredith, C.S., Khan, A.S.: Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing. Int. J. Plast. 3031, 202–217 (2012)

    Article  Google Scholar 

  18. Nixon, M.E., Cazacu, O., Lebensohn, R.A.: Anisotropic response of high-purity \(\alpha \)-titanium: Experimental characterization and constitutive modeling. Int. J. Plast. 26(4), 516–532 (2015)

    Article  MATH  Google Scholar 

  19. Naumenko, K., Gariboldi, E.: A phase mixture model for anisotropic creep of forged Al–Cu–Mg–Si alloy. Mater. Sci. Eng. A 618, 368–376 (2014)

    Article  Google Scholar 

  20. Gariboldi, E., Naumenko, K., Ozhoga-Maslovskaja, O., Zappa, E.: Analysis of anisotropic damage in forged al-cu-mg-si alloy based on creep tests, micrographs of fractured specimen and digital image correlations. Mater. Sci. Eng. A 652, 175–185 (2016)

    Article  Google Scholar 

  21. Truszkowski, W.: The Plastic Anisotropy in Single Crystals and Polycrystalline Metals. Springer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  22. Fujiwara, T., Nakamuraa, A., Hosomia, M., Nishitania, S.R., Shiraia, Y., Yamaguchia, M.: Deformation of polysynthetically twinned crystals of TiAl with a nearly stoichiometric composition. Philos. Mag. A 61(4), 591–606 (1990)

    Article  Google Scholar 

  23. Brockman, R.A.: Analysis of elastic–plastic deformation in TiAl polycrystals. Int. J. Plast. 19(10), 1749–1772 (2003)

    Article  MATH  Google Scholar 

  24. Zambaldi, C., Raabe, D.: Plastic anisotropy of \(\gamma \)-tial revealed by axisymmetric indentation. Acta Mater. 58(9), 3516–3530 (2010)

    Article  Google Scholar 

  25. Wegmann, G., Suda, T., Maruyama, K.: Deformation characteristics of polysynthetically twinned (PST) crystals during creep at 1150K. Intermetallics 8(2), 165–177 (2000)

    Article  Google Scholar 

  26. Appel, F., Clemens, H., Fischer, F.D.: Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81, 55–124 (2016)

    Article  Google Scholar 

  27. Chen, G., Peng, Y., Zheng, G., Qi, Z., Wang, M., Yu, H., Dong, C., Liu, C.T.: Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 15, 876–881 (2016)

    Article  Google Scholar 

  28. Palm, M., Engberding, N., Stein, F., Kelm, K., Irsen, S.: Phases and evolution of microstructures in Ti–60at.%Al. Acta Mater. 60, 3559–3569 (2012)

    Article  Google Scholar 

  29. Li, J., Weng, G.J.: Time-dependent creep of a dual-phase viscoplastic material with lamellar structure. Int. J. Plast. 14(8), 755–770 (1998)

    Article  MATH  Google Scholar 

  30. Sturm, D.: Herstellung und eigenschaften al-reicher tial legierungen. Ph.D. thesis, OvGU Magdeburg (2010)

  31. Lei, C., Xu, Q., Sun, Y.: Phase orientation relationships in the \(\text{ TiAl-TiAl }_{2}\) region. Mater. Sci. Eng. A 313, 227–236 (2001)

    Article  Google Scholar 

  32. Stein, F., Zhang, L.C., Sauthoff, G., Palm, M.: TEM and DTA study on the stability of \(\text{ Al }_{5} \text{ Ti }_{3-}\) and \(\text{ h-Al }_{2}\)Ti-superstructures in aluminium-rich TiAl alloys. Acta Mater. 49(15), 2919–2932 (2001)

    Article  Google Scholar 

  33. Sturm, D., Heilmaier, M., Saage, H., Aguilar, J., Schmitz, G.J., Drevermann, A., Palm, M., Stein, F., Engberding, N., Kelm, K., Irsen, S.: Creep strength of a binary \(\text{ Al }_{62} \text{ Ti }_{38}\) alloy. Int. J. Mater. Res. 101(5), 676–679 (2010)

    Article  Google Scholar 

  34. Hayashi, K., Nakano, T., Umakoshi, Y.: Plastic deformation behaviour and deformation substructure in Al-rich TiAl single crystals deformed at high temperatures. Sci. Technol. Adv. Mater. 2, 433–441 (2001)

    Article  Google Scholar 

  35. Nakano, T., Hayashi, K., Umakoshi, Y.: Formation and stability of transitional long-period superstructures in Al-rich TiAl single crystals. Philos. Mag. A 82, 763–777 (2002)

    Article  Google Scholar 

  36. Zhang, L.C., Palm, M., Stein, F., Sauthoff, G.: Formation lamellar microstructures Al-rich TiAl alloys between 900 to \(1100\,^\circ \text{ C }\). Intermetallics 9, 229–238 (2001)

    Article  Google Scholar 

  37. Nakano, T., Hata, S., Hayashi, K., Umakoshi, Y.: Some Long-Period Superstructures and the Related Motion of Dislocations in Al-Rich TiAl Single Crystals, vol. 2, pp. 797–804. Wiley, New York (2012)

    Google Scholar 

  38. Umakoshi, Y., Nakano, T., Ashida, K.: High-temperature deformation in Ti–62.5at.%Al single crystals containing small \(\text{ Al }_{2}\)Ti-type precipitates. Mater. Sci. Forum 304–306, 163–168 (1999)

    Article  Google Scholar 

  39. Nakano, T., Hayashi, K., Ashida, K., Umakoshi, Y.: Effect of \(\text{ Al }_{2}\text{ Ti }\) phase on plastic behavior in Ti-62.5 At%Al single crystals. In: Symposium: High-Temperature Ordered Intermetallic Alloys VIII. MRS Proceedings, vol. 552 (1998)

  40. Hata, S., Nakano, T., Kuwano, N., Itakura, M., Matsumura, S., Umakoshi, Y.: Microscopic properties of long-period ordering in Al-rich TiAl alloys. Metal. Mater. Trans. A 39(7), 1610–1617 (2008)

    Article  Google Scholar 

  41. Appel, F., Paul, J., Oehring, M.: Gamma Titanium Aluminide Alloys: Science and Technology. Wiley, Weinheim (2011)

    Book  Google Scholar 

  42. Asaro, R.J., Needleman, A.: Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metal. 33(6), 923–953 (1985)

    Article  Google Scholar 

  43. Mathur, K.K., Dawson, P.R.: On modeling the development of crystallographic texture in bulk forming processes. Int. J. Plast. 5(1), 67–94 (1989)

    Article  Google Scholar 

  44. Zhang, M., Zhang, J., McDowell, D.L.: Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int. J. Plast. 23(8), 1328–1348 (2007)

    Article  MATH  Google Scholar 

  45. Brown, S.B., Kim, K.H., Anand, L.: An internal variable constitutive model for hot working of metals. Int. J. Plast. 5(2), 95–130 (1989)

    Article  MATH  Google Scholar 

  46. Conti, S., Hackl, K.: Analysis and Computation of Microstructure in Finite Plasticity. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  47. Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25(5), 309–338 (1977)

    Article  MATH  Google Scholar 

  48. Asaro, R.J.: Micromechanics of Crystals and Polycrystals. Advances in Applied Mechanics, vol. 23, pp. 1–115. Elsevier, Amsterdam (1983)

    Google Scholar 

  49. Meric, L., Poubanne, P., Cailletaud, G.: Single crystal modeling for structural calculations: part 1—model presentation. ASME J. Eng. Mater. Technol. 113(1), 162–170 (1991)

    Article  Google Scholar 

  50. le Graverend, J.B., Cormier, J., Gallerneau, F., Villechaise, P., Kruch, S., Mendez, J.: A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int. J. Plast. 59, 55–83 (2014)

    Article  Google Scholar 

  51. Tanaka, K.: Single-crystal elastic constants of gamma-TiAl. Philos. Mag. Lett. 73(2), 71–78 (1996)

    Article  Google Scholar 

  52. He, Y., Schwarz, R., Darling, T., Hundley, M., Whang, S., Wang, Z.: Elastic constants and thermal expansion of single crystal \(\gamma \)-TiAl from 300 to 750K. Mater. Sci. Eng. A 239–240, 157–163 (1997)

    Article  Google Scholar 

  53. Yoo, M.H., Fu, C.L.: Physical constants, deformation twinning, and microcracking of titanium aluminides. Metal. Mater. Trans. A 29, 49–63 (1998)

    Article  Google Scholar 

  54. Tang, P., Tang, B., Su, X.: First-principles studies of typical long-period superstructures \(\text{ Al }_{5}\text{ Ti }_{3}\), \(\text{ h-Al }_{2}\text{ Ti }\) and \(\text{ r-Al }_{2} \text{ Ti }\) in Al-rich TiAl alloys. Comput. Mater. Sci. 50(4), 1467–1476 (2011)

    Article  MathSciNet  Google Scholar 

  55. Inui, H., Chikugo, K., Nomura, K., Yamaguchi, M.: Lattice defects and their influence on the deformation behavior of single crystals of TiAl. Mater. Sci. Eng. A 329–331, 377–387 (2002)

    Article  Google Scholar 

  56. Nakano, T., Matsumoto, K., Seno, T., Oma, K., Umakoshi, Y.: Effect of chemical ordering on the deformation mode of Al-rich Ti–Al single crystals. Philos. Mag. A 74(1), 251–268 (1996)

    Article  Google Scholar 

  57. Inui, H., Matsumuro, M., Wu, D.H., Yamaguchi, M.: Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti–56 at.% Al). Philos. Mag. A 75(2), 395–423 (1997)

    Article  Google Scholar 

  58. Feng, Q., Whang, S.H.: Deformation of Ti-56at.%Al single crystals oriented for single slip by \(\frac{1}{2}<110]\) ordinary dislocations. Acta Mater. 48(17), 4307–4321 (2000)

    Article  Google Scholar 

  59. Kassner, M.E., Perez-Prado, M.T.: Five-power-law creep in single phase metals and alloys. Prog. Mater. Sci. 45(1), 1–102 (2000)

    Article  Google Scholar 

  60. Khadyko, M., Dumoulin, S., Cailletaud, G., Hopperstad, O.S.: Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy. Int. J. Plast. 76, 51–74 (2016)

    Article  Google Scholar 

  61. Groh, S., Marin, E.B., Horstemeyer, M.F., Zbib, H.M.: Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plast. 25(8), 1456–1473 (2009)

    Article  MATH  Google Scholar 

  62. Lim, H., Carroll, J.D., Battaile, C.C., Boyce, B.L., Weinberger, C.R.: Quantitative comparison between experimental measurements and CP-FEM predictions of plastic deformation in a tantalum oligocrystal. Int. J. Mech. Sci. 92, 98–108 (2015)

    Article  Google Scholar 

  63. Nakada, Y., Keh, A.S.: Latent hardening in iron single crystals. Acta Metal. 14(8), 961–973 (1966)

    Article  Google Scholar 

  64. Horstemeyer, M.F., McDowell, D.L., McGinty, R.D.: Design of experiments for constitutive model selection: application to polycrystal elastoviscoplasticity. Model. Simul. Mater. Sci. Eng. 7(2), 253–273 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by DFG within the Ph.D. school GRK1554. We would like to gratefully acknowledge Prof. Albrecht Bertram (Magdeburg) for his suggestion regarding modeling approach and would like to thank our GRK fellow Mr. Philipp Thiem for his valuable comments from the material science perspectives. We also would like to express our special thanks of gratitude to Dr. Mokarram Hossain from Swansea University and to Mr. Mamun Al-Siraj from TU Darmstadt for their valuable comments after line-by-line proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helal Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, H., Naumenko, K., Altenbach, H. et al. Critical stresses estimation by crystal viscoplasticity modeling of rate-dependent anisotropy of Al-rich TiAl alloys at high temperature. Arch Appl Mech 88, 65–81 (2018). https://doi.org/10.1007/s00419-017-1291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1291-4

Keywords

Navigation