Skip to main content
Log in

Effects of Different Deformation Modes on Texture Evolution and Mechanical Behavior of As-Extruded AZ31 Alloy under Compression along Different Directions

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of different deformation modes on texture evolutions and mechanical behavior of as-extruded AZ31 alloy during compression in different directions at room temperature (RT) have been investigated by experiments and visco-plastic self-consistent (VPSC) modeling. According to the results, the relative activities of different deformation modes can fully demonstrate the general characteristics of flow curves and texture evolution. Despite a similar pattern between the relative activity of basal <a> slip and \(\{10\overline{1}2\}\) extension twinning during compression along 45° to the extrusion direction (45ED) and perpendicular to the extrusion direction (PED), pyramidal <c + a> slip has a more pronounced activity in PED, resulting in higher flow stress in PED than 45ED. Grains whose c-axis is perpendicular to loading direction (LD) cannot be reoriented, when the CRSS value was set high enough to prevent \(\{10\overline{1}2\}\) extension twinning. The \(\{10\overline{1}2\}\) extension twinning has a great influence on texture evolution and mechanical behavior. On the contrary, the \(\{10\overline{1}1\}\) contraction twinning has a negligible influence on texture evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Arul Kumar, I.J. Beyerlein, and C.N. Tomé, A measure of Plastic Anisotropy for Hexagonal Close Packed Metals: Application to Alloying Effects on the Formability of Mg, J. Alloys Compd., 2017, 695, p 1488–1497.

    Article  CAS  Google Scholar 

  2. J. Zhang, S. Liu, and R. Wu, Recent Developments in High-Strength Mg-RE-Based Alloys: Focusing on Mg-Gd and Mg-Y Systems, J. Magnes Alloy, 2018, 6, p 277–291.

    Article  CAS  Google Scholar 

  3. A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, and H. El Kadiri, A Review on the Effect of Rare-Earth Elements on Texture Evolution during Processing of Magnesium Alloys, J. Mater. Sci., 2017, 52(1), p 1–29.

    Article  CAS  Google Scholar 

  4. X. Zhou, Q. Liu, R. Liu, and H. Zhou, Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes, Met. Mater. Int., 2018, 24, p 1–10.

    Article  Google Scholar 

  5. H. Pan, R. Kang, and J. Li, Mechanistic Investigation of a Low-Alloy Mg-Ca-Based Extrusion Alloy with High Strength–Ductility Synergy, Acta Mater., 2020, 186, p 278–290.

    Article  CAS  Google Scholar 

  6. Y. Chai, Y. Song, B. Jiang, and J. Fu, Comparison of Microstructures and Mechanical Properties of Composite Extruded AZ31 Sheets, J. Magnes Alloy., 2019, 7(4), p 545–554.

    Article  CAS  Google Scholar 

  7. B. Selvarajou, S.P. Joshi, and A.A. Benzerga, Three Dimensional Simulations of Texture and Triaxiality Effects on the Plasticity of Magnesium Alloys, Acta Mater., 2017, 127, p 54–72.

    Article  CAS  Google Scholar 

  8. X. Zhou, R. Liu, Q. Liu, and H. Zhou, Effect of Asymmetric Rolling on the Microstructure, Mechanical Properties and Texture Evolution of Mg-8Li-3Al-1Y Alloy, Met. Mater. Int., 2019, 25, p 1301–1311.

    Article  Google Scholar 

  9. N.V. Dudamell, I. Ulacia, and F. Galvez, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59(18), p 6949–6962.

    Article  CAS  Google Scholar 

  10. L. Wu, S.R. Agnew, and Y. Ren, The Effects of Texture and Extension Twinning on the Low-Cycle Fatigue behavior of a Rolled Magnesium Alloy, AZ31B, Mater. Sci. Eng. A, 2010, 527(26), p 7057–7067.

    Article  Google Scholar 

  11. X.Z. Lin and D.L. Chen, Strain Controlled Cyclic Deformation behavior of An Extruded Magnesium Alloy, Mater. Sci. Eng. A, 2008, 496(1–2), p 106–113.

    Article  Google Scholar 

  12. J.B. Lin, Q.D. Wang, L.M. Peng, and T. Peng, Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-extruded ZK60 Magnesium Alloy, Mater. Trans., 2008, 49, p 1021–1024.

    Article  CAS  Google Scholar 

  13. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Texture Evolution of five Wrought Magnesium Alloys during Route A Equal Channel Angular Extrusion: Experiments and Simulations, Acta Mater., 2005, 53(11), p 3135–3146.

    Article  CAS  Google Scholar 

  14. S. Yi, J. Bholen, F. Heinemann, and D. Letzig, Mechanical Anisotropy and Deep Drawing Behaviour of AZ31 and ZE10 Magnesium Alloy Sheets, Acta Mater., 2010, 58(2), p 592–605.

    Article  CAS  Google Scholar 

  15. Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Texture Evolution during Cold Rolling of Dilute Mg Alloys, Scr. Mater, 2015, 108, p 6–10.

    Article  CAS  Google Scholar 

  16. J.B. Lin, W.J. Ren, and X.Y. Wang, Tension–Compression Asymmetry in Yield Strength and Hardening Behaviour of as-Extruded AZ31 Alloy, Mater. Sci. Technol. Lond, 2016, 32(18), p 1855–1860.

    Article  CAS  Google Scholar 

  17. J. Jain, W.J. Poole, and C.W. Sinclair, Reducing the Tension–Compression Yield Asymmetry in a Mg-8Al-05 Zn Alloy Via Precipitation, Scr. Mater., 2010, 62(5), p 301–304.

    Article  CAS  Google Scholar 

  18. S. Kurukuri and M.J. Worswick, Rate Sensitivity and Tension–Compression Asymmetry in AZ31B Magnesium Alloy Sheet, Philos. Trans. Royal Soc. A, 2015, 372, p 20130216.

    Article  Google Scholar 

  19. J. Sun, Z. Yang, and H. Liu, Tension-Compression Asymmetry of the AZ91 Magnesium Alloy with Multi-Heterogenous Microstructure, Mater. Sci. Eng. A, 2019, 759, p 703–707.

    Article  CAS  Google Scholar 

  20. D. Steglich et al., Biaxial Deformation Behavior of AZ31 Magnesium Alloy: Crystal-Plasticity-Based Prediction and Experimental Validation, Int. J. Solids Struct., 2012, 49(25), p 3551–3561.

    Article  CAS  Google Scholar 

  21. R.A. Lebensohn, and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624.

    Article  CAS  Google Scholar 

  22. F. Kabirian, and A.S. Khan, Visco-Plastic Modeling of Mechanical Responses and Texture Evolution in Extruded AZ31 Magnesium Alloy for Various Loading Conditions, Int. J. Plast., 2015, 68, p 1–20.

    Article  CAS  Google Scholar 

  23. Q. Chen, L. Hu, and L. Shi, Assessment in Predictability of Visco-Plastic Self-Consistent Model with a Minimum Parameter Approach: Numerical Investigation of Plastic Deformation Behavior of AZ31 Magnesium Alloy for Various Loading Conditions, Mater. Sci. Eng. A, 2020, 774, p 138–912.

    Article  Google Scholar 

  24. N. Chandola, R.K. Mishra, and O. Cazacu, Application of the VPSC Model to the Description of the Flow Response and Texture Evolution in AZ31 Mg for Various Strain Paths, J. Eng. Mater. Technol., 2015, 137(4), p 041007.

    Article  Google Scholar 

  25. J.Y. Yao, B.S. Wang, and L.P. Deng et al., Simulation of Texture Evolution and Deformation Mechanism in Mg-3Al-1Zn Alloy during Uniaxial Compression, Sci. China. Technol. Sc., 2015, 58, p 2052–2059.

    Article  CAS  Google Scholar 

  26. A. Molinair, G.R. Canova, and S. Ahzi, A Self-Consistent Approach of the Large Deformation Polycrystal Viscoplasticity, Acta Metall., 1987, 35, p 2983–2994.

    Article  Google Scholar 

  27. R.A. Lebensohn, and C.N. Tome, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall., 1993, 41, p 2611–2624.

    Article  CAS  Google Scholar 

  28. R.A. Lebensohn, and C.N. Tome, A Self-Consistent Viscoplastic Model-Prediction of Rolling Textures of Anisotropic Polycrystals, Mater. Sci. Eng. A, 1994, 175, p 71–82.

    Article  Google Scholar 

  29. E. Kroner, On the Plastic Deformation of Polycrystals, Acta Metall., 1961, 9, p 155–161.

    CAS  Google Scholar 

  30. J.W. Hutchinson, Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials, Proc. Roryal Soc. A Math. Phy. Sci., 1976, 348(1652), p 101–127.

    CAS  Google Scholar 

  31. R.A. Lebensohn, A.P. Turner, J.W. Signorelli, G.R. Canova, and C.N. Tome, Calculation of Intergranular Stresses based on a Large Strain Visco-Plastic Selfconsistent Model, Modelling Simul, Mater. Sci. Eng. A, 1998, 39(6), p 447–465.

    Google Scholar 

  32. C.N. Tome, R.A. Lebensohn, and U.F. Kocks, A Model for Texture Development Dominated by Deformation Twinning: Application to Zirconium Alloys, Acta Metull. Muter., 1991, 39, p 2667–2680.

    Article  CAS  Google Scholar 

  33. S.R. Agnew and O. Duygulu, Plastic Anisotropy and the role of Non-Basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21(6), p 1161–1193.

    Article  CAS  Google Scholar 

  34. S.R. Agnew, M.H. Yoo, and C.N. Tome, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49(20), p 4277–4289.

    Article  CAS  Google Scholar 

  35. J.B. Lin, Q.D. Wang, L.M. Peng, and H.J. Roven, Study on Deformation Behavior and Strain Homogeneity during Cyclic Extrusion and Compression, J. Mater. Sci., 2008, 43(21), p 6920–6924.

    Article  CAS  Google Scholar 

  36. A. Fernández, A. Jérusalem, I. Gutiérrez-Urrutia et al., Three-Dimensional Investigation of Grain Boundary–Twin Interactions in a Mg AZ31 alloy by Electron Backscatter Diffraction and Continuum Modeling, Acta Mater., 2013, 61, p 7679–7692.

    Article  Google Scholar 

  37. J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater. Sci., 1995, 39, p 1–157.

    Article  Google Scholar 

  38. X. Li, P. Yang, L.N. Wang, L. Meng, and F. Cui, Orientational Analysis of Static Recrystallization at Compression Twins in a Mg Alloy AZ31, Mater. Sci. Eng. A, 2009, 517(1), p 160–169.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Natural Science Foundation of Shanxi Province (201901D11126), The “TSTAP” of Higher Education Institutions in Shanxi (2020CG046), The “CSREP” of Higher Education Institutions in Shanxi (2019KJ027), The National Nature Science Foundation of China (51574171), The Graduate Education Innovation Project in Shanxi (2021Y707), and The Graduate Education Innovation Project in Shanxi (2021Y668).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Lin.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Lin, J., Mu, W. et al. Effects of Different Deformation Modes on Texture Evolution and Mechanical Behavior of As-Extruded AZ31 Alloy under Compression along Different Directions. J. of Materi Eng and Perform 32, 1737–1746 (2023). https://doi.org/10.1007/s11665-022-07236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07236-y

Keywords

Navigation