Skip to main content
Log in

Vibration suppression of a cable-stayed beam by a nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The vibration control of cables of cable-stayed bridges has been one of the hot research fields in recent years. In this study, the influence of a nonlinear energy sink (NES) on vibration of the cable-stayed beam structure under external harmonic loads is investigated. Firstly, a mathematical model consisting of a cable, a beam, and a NES is established. By considering the interaction between the cable and beam, the nonlinear dynamic equation of the NES-cable-beam coupled system are derived by applying Hamilton's principle. Then, the motion equations of cable and beam are discretized into a set of ordinary differential equations (ODEs) using Galerkin method. The incremental harmonic balance (IHB) method is used to solve the ODEs. In addition, the results obtained by IHB method are verified those obtained using numerical method. Finally, the influence of NES on the response of the cable-stayed beam is investigated. Meantime, the influence of the cable-beam coupling vibration on the vibration mitigation effect of NES attached to the cable is analyzed. The results show that NES has a significant vibration mitigation effect on both cable and beam. However, the vibration mitigation effect of NES is reduced by the cable-beam coupling vibration. Furthermore, the stronger the degree of cable-beam coupling vibration, the worse the vibration mitigation effect of NES on the cable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    Article  MATH  Google Scholar 

  2. Kamel, M.M., Hamed, Y.S.: Nonlinear analysis of an elastic cable under harmonic excitation. Acta Mech. 214(3–4), 315–325 (2010)

    Article  MATH  Google Scholar 

  3. Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dyn. 33(2), 129–154 (2003)

    Article  MATH  Google Scholar 

  4. Wang, L.H., Zhao, Y.Y.: Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. Int. J. Solids Struct. 4, 7800–7819 (2006)

    Article  MATH  Google Scholar 

  5. Wang, L.H., Zhao, Y.Y.: Non-linear planar dynamics of suspended cables investigated by the continuation method. Eng. Struct. 29, 1135–1144 (2007)

    Article  Google Scholar 

  6. Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J., Wang, D.J.: Generalised modal stability of inclined cables subjected to support excitations. J. Sound Vib. 329(21), 4515–4533 (2010)

    Article  Google Scholar 

  7. Kang, H.J., Guo, T.D., Zhu, W.D., Su, J.Y., Zhao, B.Y.: Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances. Appl. Math. Mech. 40(5), 649–678 (2019)

    Article  MathSciNet  Google Scholar 

  8. Fujino, Y., Warnitchai, P., Pacheco, B.M.: Experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4(2), 111–138 (1993)

    Article  Google Scholar 

  9. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40(18), 4729–4748 (2003)

    Article  MATH  Google Scholar 

  10. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193(1–2), 69–85 (2004)

    Article  MATH  Google Scholar 

  11. Gattulli, V., Lepidi, M., Macdonald, J.H.G., Taylor, C.A.: One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int. J. Non-Linear Mech. 40(4), 571–588 (2005)

    Article  MATH  Google Scholar 

  12. Wei, M.H., Lin, K., Jin, L., Zou, D.J.: Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance. Int. J. Mech. Sci. 110, 78–93 (2016)

    Article  Google Scholar 

  13. Pacheco, B.M., Fujino, Y., Sulekh, A.: Estimation curve for modal damping in stay cables with viscous damper. J. Struct. Eng. 119(6), 1961–1979 (1993)

    Article  Google Scholar 

  14. Krenk, S.: Complex modes and frequencies in damped structural vibrations. J. Sound Vib. 270(4–5), 981–996 (2004)

    Article  Google Scholar 

  15. Cai, C.S., Wu, W.J., Araujo, M.: Cable vibration control with a TMD-MR damper system: experimental exploration. J. Struct. Eng. 133(5), 629–637 (2007)

    Article  Google Scholar 

  16. Wu, W.J., Cai, C.S.: Theoretical exploration of a taut cable and a TMD system. Eng. Struct. 29(6), 962–972 (2007)

    Article  Google Scholar 

  17. Su, X.Y., Kang, H.J., Guo, T.D.: Modelling and energy transfer in the coupled nonlinear response of a 1: 1 internally resonant cable system with a tuned mass damper. Mech. Syst. Signal Process. 162, 108058 (2022)

    Article  Google Scholar 

  18. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  19. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Article  Google Scholar 

  20. Wang, G.X., Ding, H., Chen, L.Q.: Optimization of a nonlinear energy sink with double springs and harmonic excitation. J. Dyn. Control 19(06), 46–51 (2021). (in Chinese)

    Google Scholar 

  21. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25(1), 237–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, J.E., He, W., Zhang, W., Yao, M.H., Liu, J., Sun, M.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91(2), 885–904 (2018)

    Article  Google Scholar 

  23. Zhao, X.Y., Zhang, Y.W., Ding, H., Chen, L.Q.: Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. Int. J. Appl. Mech. 10(09), 1850096 (2018)

    Article  Google Scholar 

  24. Zhang, Y., Kong, X., Yue, C.: Vibration analysis of a new nonlinear energy sink under impulsive load and harmonic excitation. Commun. Nonlinear Sci. Numer. Simul. 116, 106837 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, Y., Liu, K., Xiong, L., et al.: A non-traditional variant nonlinear energy sink for vibration suppression and energy harvesting. Mech. Syst. Signal Process. 181, 109479 (2022)

    Article  Google Scholar 

  26. Wang, G.X., Ding, H., Chen, L.Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Process. 169, 108770 (2022)

    Article  Google Scholar 

  27. He, M.X., Tang, Y., Ding, Q.: Dynamic analysis and optimization of a cantilevered beam with both the acoustic black hole and the nonlinear energy sink. J. Intell. Mater. Syst. Struct. 33(1), 70–83 (2022)

    Article  Google Scholar 

  28. Wang, G.X., Ding, H.: Mass design of nonlinear energy sinks. Eng. Struct. 250, 113438 (2022)

    Article  Google Scholar 

  29. Karličić, D., Cajić, M., Paunović, S., Adhikari, S.: Periodic response of a nonlinear axially moving beam with a nonlinear energy sink and piezoelectric attachment. Int. J. Mech. Sci. 195, 106230 (2021)

    Article  Google Scholar 

  30. Zhou, P., Li, H.: Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct. Control. Health Monit. 23(4), 764–782 (2016)

    Article  MathSciNet  Google Scholar 

  31. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21–30 (2000)

    Article  Google Scholar 

  33. Liang, D., Kang, J., Zhao, W.Z., Liu, J.: Coupled vibration of cable-stayed bridges considering cables’ interaction. J. Vib. Shock 39(7), 8 (2020). (in Chinese)

    Google Scholar 

  34. Chen, S.H., Cheung, Y.K., Xing, H.X.: Nonlinear vibration of plane structures by finite element and incremental harmonic balance method. Nonlinear Dyn. 26(1), 87–104 (2001)

    Article  MATH  Google Scholar 

  35. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

  36. Wu, Z., Zhang, Y., Yao, G., Yang, Z.: Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams. Int. J. Mech. Sci. 153, 321–340 (2019)

    Article  Google Scholar 

  37. Hui, Y., Kang, H.J., Law, S.S., Chen, Z.Q.: Analysis on two types of internal resonance of a suspended bridge structure with inclined main cables based on its sectional model. Eur. J. Mech. A/Solids 72, 135–147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151 and 11872176).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The coefficients in Eqs. (2226) are given as

$$ c_{101} = \mu_{b} ; $$
$$ c_{102} = \frac{{\int_{0}^{1} {\phi_{1} {(}x{)}\phi_{1}^{(4)} {(}x{)}} {\text{d}}x}}{{\beta_{b}^{4} \int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\sin \theta \phi_{1} {(}x_{1} {)}}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{c} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{103} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{c} {(}x{)}} \varphi^{\prime}_{1} {(}x{\text{)d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{104} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{c} {(}x{)}} \varphi^{\prime}_{2} {(}x{\text{)d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{105} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{c} {(}x{)}} \varphi^{\prime}_{3} {(}x{\text{)d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{106} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}}}{{2\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{107} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{108} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{109} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{110} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{111} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{112} = - \frac{{\kappa_{c} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{113} = - \frac{{\eta_{b} \int_{0}^{1} {\phi_{1}^{\prime 2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\phi_{1} {(}x{)}\phi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{b}^{4} \int_{0}^{1} {\phi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{201} = \frac{{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{202} = \mu_{c} ; $$
$$ c_{203} = \frac{{\mu_{c} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{204} = - \frac{{\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x + \lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{205} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{206} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{207} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{208} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{209} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{210} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{211} = - \frac{{\lambda_{c} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{212} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{213} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{214} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y_{c}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{215} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{216} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{217} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{218} = - \frac{{\lambda_{c} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{219} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{220} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{221} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{222} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{223} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi_{1}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{224} = \frac{{k_{n} \varphi_{1} (l_{1} )}}{{\int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{225} = \frac{{c_{n} \varphi_{1} (l_{1} )}}{{\int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{226} = \frac{{\int_{0}^{1} {f\varphi_{1} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{1}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{301} = \frac{{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{302} = \mu_{c} ; $$
$$ c_{303} = \frac{{\mu_{c} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{304} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{305} = - \frac{{\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x + \lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{306} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{307} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{308} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{309} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{310} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{311} = - \frac{{\lambda_{c} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{312} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{313} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{314} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{315} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y_{c}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{316} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{317} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{318} = - \frac{{\lambda_{c} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{319} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{320} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{321} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{322} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{323} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi_{2}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{324} = \frac{{k_{n} \varphi_{2} (l_{1} )}}{{\int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{325} = \frac{{c_{n} \varphi_{2} (l_{1} )}}{{\int_{0}^{1} {\varphi_{2}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{401} = \frac{{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{402} = \mu_{c} ; $$
$$ c_{403} = \frac{{\mu_{c} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{404} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{405} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{406} = - \frac{{\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x + \lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{407} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{408} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{409} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{410} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{411} = - \frac{{\lambda_{c} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{412} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{413} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y_{c}^{\prime } {(}x{)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{414} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{415} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{416} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}y_{c}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}} - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y_{c}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}} + \frac{{\sin \theta \gamma_{c} \lambda_{c} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{417} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{418} = - \frac{{\lambda_{c} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{419} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{3}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{420} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{2}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{421} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{422} = - \frac{{\lambda_{c} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi_{1}^{\prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x}}{{\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{423} = - \frac{{\lambda_{c} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1}^{\prime 2} {(}x{)}} {\text{d}}x}}{{2\beta_{c}^{2} \int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{424} = \frac{{k_{n} \varphi_{3} (l_{1} )}}{{\int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{425} = \frac{{c_{n} \varphi_{3} (l_{1} )}}{{\int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{426} = \frac{{\int_{0}^{1} {f\varphi_{3} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\varphi_{3}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ c_{501} = \frac{{k_{n} }}{{m_{n} }}; $$
$$ c_{502} = \frac{{c_{n} }}{{m_{n} }}. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kang, H., Cong, Y. et al. Vibration suppression of a cable-stayed beam by a nonlinear energy sink. Nonlinear Dyn 111, 14829–14849 (2023). https://doi.org/10.1007/s11071-023-08651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08651-z

Keywords

Navigation