Skip to main content
Log in

Local and nonlocal material models, spatial randomness, and impact loading

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In many material systems, both man-made and natural, we have an incomplete knowledge of geometric or material properties, which leads to uncertainty in predicting their performance under dynamic loading. Given the uncertainty and a high degree of spatial variability in properties of geological formations subjected to impact, a stochastic theory of continuum mechanics would be useful for modeling dynamic response of such systems. In this paper, we examine spatial randomness in local and nonlocal material-mechanics models. We begin with classical linear elasticity. Then, we consider nonlocal elasticity and, finally, peridynamic theory. We discuss a formulation of stochastic peridynamic theory and illustrate this formulation with examples of impact loading of geological materials with uncorrelated versus correlated properties, sampled in a Monte Carlo sense. We examine wave propagation and damage to the material. The most salient feature is the absence of spallation, referred to as disorder toughness, which, in fact, generalizes similar results from earlier quasi-static damage mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. In (29) and elsewhere, bold quantities are vectors unless stated otherwise.

References

  1. Grigoriu, M.: Stochastic Calculus, Applications in Science and Engineering. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  2. Soize, C.: Stochastic Models of Uncertainties in Computational Mechanics, Lecture Notes in Mechanics 2. ASCE (2012)

  3. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC Press Inc, Boca Raton (2008)

    MATH  Google Scholar 

  4. Christakos, G.: Random Field Models in Earth Sciences. Dover, Mineola, NY (1992)

  5. Porcu, E., Montero, J.M., Schlather, M.: Challenges in Space-Time Modelling of Natural Events. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  6. Beran, M.: Statistical continuum mechanics: an Introduction. In: Jeulin, D., Ostoja-Starzewski, M. (eds.), Mechanics of Random and Multiscale Microstructures. CISM Courses and Lectures, vol. 430. Springer, New York (2000)

  7. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  8. Mandel, J., Dantu, P.: Contribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogènes mais statisquement homogène. Annales des Ponts et Chaussées Paris 113(2), 115–146 (1963)

    Google Scholar 

  9. Ranganathan, S., Ostoja-Starzewski, M.: Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56, 2773–2791 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ostoja-Starzewski, M., Ranganathan, S.I.: Scaling and homogenization in spatially random composites. In: Mantic, V. (ed.) Chapter 2 in Mathematical Methods and Models in Composites, pp. 61–102. World Scientific, Singapore (2013)

    Chapter  Google Scholar 

  11. Ostoja-Starzewski, M., Wang, X.: Stochastic finite elements as a bridge between random material microstructure and global response. Comp. Meth. Appl. Mech. Eng. 168(1–4), 35–49 (1999)

    Article  MATH  Google Scholar 

  12. Beran, M.J., McCoy, J.J.: Mean field variations in a statistical sample of heterogeneous linearly elastic solids. Int. J. Solids Struct. 6, 1035–1054 (1970)

    Article  MATH  Google Scholar 

  13. Beran, M.J., McCoy, J.J.: The use of strain gradient theory for analysis of random media. Int. J. Solids Struct. 6, 1267–1275 (1970)

    Article  MATH  Google Scholar 

  14. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demmie, P.N., Silling, S.A.: An approach to modeling extreme loading of structures using peridynamics. J. Mech. Mater. Struct. 2(10), 1921–1945 (2007)

    Article  Google Scholar 

  16. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsh, S.: LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  18. Ostoja-Starzewski, M., Sheng, P.Y., Jasiuk, I.: Influence of random geometry on effective properties and damage formation in 2-D composites. ASME J. Eng. Mater. Technol. 116, 384–391 (1994)

    Article  Google Scholar 

  19. Ostoja-Starzewski, M., Lee, J.D.: Damage maps of disordered composites: a Spring network approach. Int. J. Fract. 75, R51–R57 (1996)

    Article  Google Scholar 

  20. Alzebdeh, K., Al-Ostaz, A., Jasiuk, I., Ostoja-Starzewski, M.: Fracture of random matrix-inclusion composites: scale effects and statistics. Int. J. Solids Struct. 35(19), 2537–2566 (1998)

    Article  MATH  Google Scholar 

  21. Cooper, P.: Explosives Engineering. Wiley-VCH Inc, New York (1996)

    Google Scholar 

  22. URL for R statistical package is http://www.r-project.org/

  23. Demmie, P.: Kraken User’s Manual. SAND2011-5003, Sandia National Laboratories, Albuquerque, NM (2013)

  24. Demmie, P.: Detonation modeling in peridynamic theory. In: Proceedings Fifteenth International Detonation Symposium, San Francisco, CA, Office of Naval Research publication number 43–280-15, July 2014

  25. Jirásek, M.: Nonlocal theories in continuum mechanics. Acta Poly. 44(5–6), 16–34 (2004)

    Google Scholar 

  26. Malyarenko, A., Ostoja-Starzewski, M.: Statistically isotropic tensor random fields: correlation structures. Math. Mech. Complex Syst. (MEMOCS) 2(2), 209–231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sena, M., Ostoja-Starzewski, M., Costa, L.: Stiffness tensor random fields through upscaling of planar random materials. Probab. Eng. Mech. 34, 131–156 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by the support from DTRA Grant HDTRA1-08-10-BRCWM and, in part, by the NSF under Grants CMMI-1462749 and IP-1362146 (I/UCRC on Novel High Voltage/Temperature Materials and Structures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ostoja-Starzewski.

Additional information

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demmie, P.N., Ostoja-Starzewski, M. Local and nonlocal material models, spatial randomness, and impact loading. Arch Appl Mech 86, 39–58 (2016). https://doi.org/10.1007/s00419-015-1095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1095-3

Keywords

Navigation