Skip to main content
Log in

An analytical procedure to study vibration of rectangular plates under non-uniform in-plane loads based on first-order shear deformation theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an analytical procedure is presented to study the vibrational behavior of rectangular plates subjected to different types of non-uniformly distributed in-plane loads. The prebuckling equations, which contain two coupled partial differential equations, are solved analytically by considering the in-plane constrains. The potential and kinetic energies of the plate are calculated based on the first-order shear deformation theory, and the Ritz method is used to obtain the corresponding eigenvalue problem from Hamilton’s principle. By parametric study, the effects of plate aspect ratio, thickness ratio and intensity of four types of in-plane load profiles, i.e., constant, parabolic, cosine and triangular on vibrational frequency and buckling load of the plate, are investigated. Comparison of the obtained results with the finite element solution shows the accuracy of the presented method for solving similar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bassily, S.F., Dickinson, S.M.: Buckling and lateral vibration of rectangular plates subject to inplane loads—a Ritz approach. J. Sound Vib. 24(2), 219–239 (1972)

    Article  Google Scholar 

  2. Dawe, D.J., Roufaeil, O.L.: Rayleigh–Ritz vibration analysis of Mindlin plates. J. Sound Vib. 69(3), 345–359 (1980)

    Article  MATH  Google Scholar 

  3. Lam, K.Y., Hung, K.C., Chow, S.T.: vibration analysis of plates with cutouts by the modified Rayleigh–Ritz method. Appl. Acoust. 28, 49–60 (1989)

    Article  Google Scholar 

  4. Gorman, D.J.: Free vibration and buckling of in-plane loaded plates with rotational elastic edge support. J. Sound Vib. 229(4), 755–773 (2000)

    Article  MATH  Google Scholar 

  5. Karami, G., Malekzadeh, P.: Static and stability analyses of arbitrary straight-sided quadrilateral thin plates by DQM. Int. J. Solids Struct. 39(19), 4927–4947 (2002)

    Article  MATH  Google Scholar 

  6. Srivastava, A.K.L., Datta, P.K., Sheikh, A.H.: Buckling and vibration of stiffened plates subjected to partial edge loading. Int. J. Mech. Sci. 45(1), 73–93 (2003)

    Article  MATH  Google Scholar 

  7. Kang, J.-H., Leissa, A.W.: Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges. Int. J. Solids Struct. 42(14), 4220–4238 (2005)

    Article  MATH  Google Scholar 

  8. Leissa, A.W., Kang, J.-H.: Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. Int. J. Mech. Sci. 44(9), 1925–1945 (2002)

    Article  MATH  Google Scholar 

  9. Zhou, D., Au, F.T.K., Cheung, Y.K., Lo, S.H.: Three-dimensional vibration analysis of circular and annular plates via the Chebyshev–Ritz method. Int. J. Solids Struct. 40(12), 3089–3105 (2003)

    Article  MATH  Google Scholar 

  10. Devarakonda, K., Bert, C.: Flexural vibration of rectangular plates subjected to sinusoidally distributed compressive loading on two opposite sides. J. Sound Vib. 283(3), 749–763 (2005)

    Article  Google Scholar 

  11. Bert, C.W., Devarakonda, K.K.: Buckling of rectangular plates subjected to nonlinearly distributed in-plane loading. Int. J. Solids Struct. 40(16), 4097–4106 (2003)

    Article  MATH  Google Scholar 

  12. Nayak, A.K.: Assumed strain finite elements for buckling and vibration analysis of initially stressed damped composite sandwich plates. J. Sandw. Struct. Mater. 7(4), 307–334 (2005)

    Article  MathSciNet  Google Scholar 

  13. Nayak, A.K., Moy, S.S.J., Shenoi, R.A.: A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates. J. Sound Vib. 286(4–5), 763–780 (2005)

    Article  MATH  Google Scholar 

  14. Civalek, Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26(2), 171–186 (2004)

    Article  Google Scholar 

  15. Civalek, Ö.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33(10), 3825–3835 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Civalek, Ö.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49(6), 752–765 (2007)

    Article  Google Scholar 

  17. Civalek, Ö., Korkmaz, A., Demir, Ç.: Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Adv. Eng. Softw. 41(4), 557–560 (2010)

    Article  MATH  Google Scholar 

  18. Wang, X., Gan, L., Wang, Y.: A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. J. Sound Vib. 298(1–2), 420–431 (2006)

    Article  Google Scholar 

  19. Wang, X., Gan, L., Zhang, Y.: Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides. Adv. Eng. Softw. 39(6), 497–504 (2008)

    Article  Google Scholar 

  20. Dong, C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 29(8), 1518–1525 (2008)

    Article  Google Scholar 

  21. Jana, P., Bhaskar, K.: Analytical solutions for buckling of rectangular plates under non-uniform biaxial compression or uniaxial compression with in-plane lateral restraint. Int. J. Mech. Sci. 49, 1104–1112 (2007)

    Article  Google Scholar 

  22. Jana, P., Bhaskar, K.: Stability analysis of simply-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions. Thin Wall. Struct. 44, 507–516 (2006)

    Article  Google Scholar 

  23. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A., Vahabi, S.: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: frequency analysis. Comput. Mater. Sci. 44(3), 951–961 (2009)

    Article  Google Scholar 

  24. Malekzadeh, P., Shahpari, S.A., Ziaee, H.R.: Three-dimensional free vibration of thick functionally graded annular plates in thermal environment. J. Sound Vib. 329(4), 425–442 (2010)

    Article  Google Scholar 

  25. Kumar Panda, S., Ramachandra, L.S.: Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. Int. J. Mech. Sci. 52(6), 819–828 (2010)

    Article  Google Scholar 

  26. Hosseini Hashemi, S., Atashipour, S.R., Fadaee, M.: An exact analytical approach for in-plane and out-of-plane free vibration analysis of thick laminated transversely isotropic plates. Arch. Appl. Mech. 82(5), 677–698 (2011)

    Article  MATH  Google Scholar 

  27. Katsikadelis, J.T., Babouskos, N.G.: Stiffness and buckling optimization of thin plates with BEM. Arch. Appl. Mech. 82(10–11), 1403–1422 (2012)

    Article  MATH  Google Scholar 

  28. Tang, Y., Wang, X.: Buckling of symmetrically laminated rectangular plates under parabolic edge compressions. Int. J. Mech. Sci. 53(2), 91–97 (2011)

    Article  Google Scholar 

  29. Ramachandra, L., Panda, S.K.: Dynamic instability of composite plates subjected to non-uniform in-plane loads. J. Sound Vib. 331(1), 53–65 (2012)

    Article  Google Scholar 

  30. Hasheminejad, S.M., Ghaheri, A., Vaezian, S.: Exact solution for free in-plane vibration analysis of an eccentric elliptical plate. Acta Mech. 224(8), 1609–1624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bambill, D.V., Rossit, C.A.: Coupling between transverse vibrations and instability Phenomena of plates subjected to in-plane loading. J. Eng. (2013)

  32. Thai, H.-T., Choi, D.-H.: Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl. Math. Model. 37(18–19), 8310–8323 (2013)

    Article  MathSciNet  Google Scholar 

  33. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  34. Sadd, M.H.: Elasticity Theory, Applications, and Numerics. Elsevier, India (2005)

    Google Scholar 

  35. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2002)

    Google Scholar 

  36. Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  37. ABAQUS (2011) 6.11. User’s manual. Dassault Systemes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abolghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolghasemi, S., Eipakchi, H.R. & Shariati, M. An analytical procedure to study vibration of rectangular plates under non-uniform in-plane loads based on first-order shear deformation theory. Arch Appl Mech 86, 853–867 (2016). https://doi.org/10.1007/s00419-015-1066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1066-8

Keywords

Navigation