Skip to main content
Log in

Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Prediction of the thermoelastic behavior of microstructured materials suggests a more general description of thermal processes in addition to the generalized continuum description extending the conventional continuum mechanics for incorporating intrinsic microstructural effects. Double dual internal variables are introduced in order to couple inertial microstructural effects like microdeformation and diffusive microstructural effects like microtemperature. The full coupled system of governing equations provides a complete extension of the classical thermoelasticity theory onto the case of microstructured solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C.A. (ed.) Handbuch der Physik, vol. VIa/2:297–345. Springer, Berlin (1972)

  2. Suhubi, E.S.: Thermoelastic solids. In: Eringen, A.C. (ed.) Continuum Physics, Vol. II, Chapter 2, pp. 173–265. Academic Press, New York (1975)

  3. Nowacki W.: Thermoelasticity, 2nd edn. Pergamon Press, Oxford and P.W.N., Warsaw (1986)

    MATH  Google Scholar 

  4. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci. 2:189–203, 389–404 (1964)

  6. Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Joseph D.D., Preziosi L.: Addendum to the paper “Heat waves”. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  MathSciNet  Google Scholar 

  8. Chandrasekharaiah D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  9. Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  10. Straughan B.: Heat Waves. Springer, New York (2011)

    Book  MATH  Google Scholar 

  11. Cardona J.-M., Forest S., Sievert R.: Towards a theory of second grade thermoelasticity. Extracta Math. 14, 127–140 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Forest S., Amestoy M.: Hypertemperature in thermoelastic solids. Comptes Rendus Mecanique 336, 347–353 (2008)

    Article  MATH  Google Scholar 

  13. Grot R.A.: Thermodynamics of a continuum with microstructure. Int J. Eng. Sci. 7, 01–814 (1969)

    Article  Google Scholar 

  14. Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, pp. 249–299. CISM, Udine (2013)

  15. Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory (II). Balance laws. Phys. A 322, 377–392 (2003)

    Article  MATH  Google Scholar 

  16. Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)

    Article  MATH  Google Scholar 

  17. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1993)

  18. Fish J., Chen W.: Higher-order homogenization of initial/boundary-value problem. J. Eng. Mech. 127, 1223–1230 (2001)

    Article  Google Scholar 

  19. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Meth. Appl. Mech. Eng. 193, 5525–5550 (2004)

    Article  MATH  Google Scholar 

  20. Pindera M.-J., Khatam H., Drago A.S., Bansal Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. Part B 40, 349–378 (2009)

    Article  Google Scholar 

  21. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)

    Article  MATH  Google Scholar 

  22. Baczynski Z.F.: Dynamic thermoelastic processes in microperiodic composites. J. Therm. Stress. 26, 55–66 (2003)

    Article  Google Scholar 

  23. Parnell W.J.: Coupled thermoelasticity in a composite half-space. J. Eng. Math. 56, 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Özdemir I., Brekelmans W.A.M., Geers M.G.D.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198, 602–613 (2008)

    Article  MATH  Google Scholar 

  25. Fish J., Filonova V., Kuznetsov S.: Micro-inertia effects in nonlinear heterogeneous media. Int. J. Numer. Meth. Eng. 91, 1406–1426 (2012)

    Article  MathSciNet  Google Scholar 

  26. Mariano, P.M.:Multifield theories in mechanics of solids. In: van der Giessen, E., Wu, T.Y. (eds.) Advances in Applied Mechanics, vol. 38, pp. 1–93 (2002)

  27. Mariano P.M., Stazi F.L.: Computational aspects of the mechanics of complex materials. Arch. Comput. Methods Eng. 12, 391–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  29. Maugin G.A., Muschik W.: Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    MATH  Google Scholar 

  30. Horstemeyer M.F., Bammann D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26, 1310–1334 (2010)

    Article  MATH  Google Scholar 

  31. Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)

    Article  MATH  Google Scholar 

  32. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Internal variables and generalized continuum theories. In: Steinmann, P. (ed.) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics, vol. 17, pp. 149–158. Springer, IUTAM Bookseries (2009)

  33. Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229–240 (2011)

    Article  MATH  Google Scholar 

  34. Berezovski A., Engelbrecht J., Salupere A., Tamm K., Peets T., Berezovski M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50, 1981–1990 (2013)

    Article  Google Scholar 

  35. Berezovski A., Engelbrecht J., Maugin G.A.: Thermoelasticity with dual internal variables. J. Therm. Stress. 34, 413–430 (2011)

    Article  Google Scholar 

  36. Engelbrecht, J., Berezovski, A.: Internal structure and internal variables in solids. J. Mech. Mater. Struct. 7–10, 983–996 (2012)

  37. Berezovski, A., Berezovski, M.: Influence of microstructure on thermoelastic wave propagation. Acta Mech. 224, 2623–2633 (2013)

  38. Berezovski, A., Engelbrecht, J.: Thermoelastic waves in solids with microstructure: dual internal variables approach. J. Coupled Syst. Multiscale Dyn. 1, 112–119 (2013)

  39. Ván, P., Berezovski, A., Papenfuss, C.: Thermodynamic foundations of generalized mechanics. Cont. Mech. Thermodyn. 26, 403–420 (2014)

  40. Capriz G.: Continua with Microstructure. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  41. Ván, P.: Weakly nonlocal non-equilibrium thermodynamics–variational principles and Second Law. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 153–186, Springer, Berlin (2009)

  42. Gyarmati I.: Non-equilibrium Thermodynamics: Field Theory and Variational Principles. Springer, Berlin (1970)

    Book  Google Scholar 

  43. Matolcsi T., Ván, P., Verhás, J.: Fundamental problems of variational principles: objectivity, symmetries and construction. In: Sieniutycz, S., Farkas, H. (eds.) Variational and Extremum Principles in Macroscopic Problems, pp. 57–74. Elsevier, Amsterdam (2005)

  44. Dell’Isola, F., Gavrilyuk, S. (eds.): Variational Models and Methods in Solid and Fluid Mechanics. Springer, Wien-New York (2011) (CISM Course, Udine)

  45. Dell’Isola F., Rosa L., Woźniak C.z.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)

    Article  MATH  Google Scholar 

  47. Ván P.: Exploiting the second law in weakly nonlocal continuum physics. Period. Polytech. Ser. Mech. Eng. 49, 79–94 (2005)

    Google Scholar 

  48. Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

  49. Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192, 1990 (1990)

    Article  Google Scholar 

  50. Cross M.C., Hohenberg P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1106 (1993)

    Article  Google Scholar 

  51. Gurtin M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezovski, A., Engelbrecht, J. & Ván, P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch Appl Mech 84, 1249–1261 (2014). https://doi.org/10.1007/s00419-014-0858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0858-6

Keywords

Navigation