Skip to main content
Log in

A first-order strain gradient damage model for simulating quasi-brittle failure in porous elastic solids

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In order to simulate quasi-brittle failure in porous elastic solids, a continuum damage model has been developed within the framework of strain gradient elasticity. An essential ingredient of the continuum damage model is the local strain energy density for pure elastic response as a function of the void volume fraction, the local strains and the strain gradients, respectively. The model adopts Griffith’s approach, widely used in linear elastic fracture mechanics, for predicting the onset and the evolution of damage due to evolving micro-cracks. The effect of those micro-cracks on the local material stiffness is taken into account by defining an effective void volume fraction. Thermodynamic considerations are used to specify the evolution of the latter. The principal features of the model are demonstrated by means of a one-dimensional example. Key aspects are discussed using analytical results and numerical simulations. Contrary to other continuum damage models with similar objectives, the model proposed here includes the effect of the internal length parameter on the onset of damage evolution. Furthermore, it is able to account for boundary layer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amanatidou E., Aravas N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002)

    Article  MATH  Google Scholar 

  2. Bažant Z.: Scaling of structural strength. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  3. Bažant Z., Jirasek M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119 (2002)

    Article  Google Scholar 

  4. Crisfield M.: A fast incremental / iterative solution procedure that handles snap through. Comput. Struct. 13, 55–62 (1981)

    Article  MATH  Google Scholar 

  5. de Borst R., Slyus L., Mühlhaus H.B., Pamin J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)

    Article  Google Scholar 

  6. Elias, J., Vorochevsky, M.: Discrete numerical simulation of fracture propagation in disordered materials: mesh dependency. In: ECF 17, pp. 2599–2606 (2008)

  7. Engelen R., Fleck N., Peerlings R., Geers M.: An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int. J. Solids Struct. 43(7–8), 1857–1877 (2006)

    Article  MATH  Google Scholar 

  8. Gologanu, M., Leblond, J., Perrin, G., Devaux, J.: Continuum micromechanics, Springer, chap Recent extensions of Gurson’s model for porous ductile metals, pp. 61–130. No. 377 in CISM International Centre for Mechanical Sciences (1997)

  9. Kachanov L.: Introduction to Continuum Damage Mechanics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  10. Kadashevich I., Stoyan D.: A beam-network model for autoclaved aerated concrete and its use for the investigation of relationships between youngs modulus and microstructure. Comput. Mater. Sci. 43(2), 293–300 (2008)

    Article  Google Scholar 

  11. Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, Berlin (2005)

    Google Scholar 

  12. Marigo J.: Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nucl. Eng. Des. 114(3), 249–272 (1989)

    Article  Google Scholar 

  13. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)

  14. Mindlin R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mindlin R., Eshel N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  16. Mühlich U., Zybell L., Kuna M.: Estimation of material properties for linear elastic strain gradient effective media. Eur. J. Mech. A/Solids 31(1), 117–130 (2012)

    Article  MathSciNet  Google Scholar 

  17. Murakami S., Kamiya K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int. J. Mech. Phys. Solids 39(4), 473–486 (1997)

    MATH  Google Scholar 

  18. Toupin R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Van Mier J., Van Vliet M.: Influence of microstructure of concrete on size/scale effects in tensile fracture. Eng. Fract. Mech. 70(16), 2281–2306 (2003)

    Article  Google Scholar 

  20. van Vliet M., van Mier J.: Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Eng. Fract. Mech. 65(2–3), 165–188 (2000)

    Article  Google Scholar 

  21. Wolf S., Walther H., Langer P., Stoyan D.: Statistische Untersuchungen der Druckfestigkeit von Porenbeton—Größeneffekt und Umrechnungsfaktoren. Mauerwerk 12(1), 19–24 (2008)

    Article  Google Scholar 

  22. Wriggers P.: Nichtlineare Finite-Element-Methoden. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Zybell L., Mühlich U., Kuna M.: Constitutive equations for porous plane-strain gradient elasticity obtained by homogenization. Arch. Appl. Mech. 79(4), 359–375 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Mühlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlich, U., Zybell, L., Hütter, G. et al. A first-order strain gradient damage model for simulating quasi-brittle failure in porous elastic solids. Arch Appl Mech 83, 955–967 (2013). https://doi.org/10.1007/s00419-013-0729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0729-6

Keywords

Navigation