Skip to main content
Log in

An efficient method to solve the strongly coupled nonlinear differential equations of impact dampers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, ongoing studies to solve nonlinear differential equations are extended by combining the Newmark-beta integration method and the piecewise linearization approach. The discussed method is illustrated with a practical example. In doing so, the coupled nonlinear differential equations of an impact oscillator, which incorporates the Hertzian contact, are derived. To investigate this problem, an object-oriented computer code, based on the presented method, is written in MATLAB. Furthermore, the discussed problem is solved numerically using the Runge–Kutta commercial code. To verify the calculated results, the contact durations, which are obtained using the discussed methods, are compared with the previous analytical results. In this study, accuracy of solution and the process time (cost) are selected as two main parameters of the solution method. The so-called adequacy factor is presented to combine the two main parameters of solution. Finally, it is shown that in the case of Hertzian contact, the presented method can be more adequate than the Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerschen G., Worden K., Vakakis A.F., Golinval J.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)

    Article  Google Scholar 

  2. Clough R.W., Penzien J.: Dynamics of Structures. 2nd edn. Computers and Structures, Berkeley (2010)

    Google Scholar 

  3. Stronge W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Goldsmith W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Dover Publications, Mineola (2002)

    Google Scholar 

  5. Pedersen S.L.: Model of contact between rollers and sprockets in chain-drive systems. Arch. Appl. Mech. 74(7), 489–508 (2005). doi:10.1007/s00419-004-0363-4

    Article  MATH  Google Scholar 

  6. Ziegler P., Eberhard P., Schweizer B.: Simulation of impacts in geartrains using different approaches. Arch. Appl. Mech. 76(9), 537–548 (2006). doi:10.1007/s00419-006-0060-6

    Article  MATH  Google Scholar 

  7. Dimentberg M.F., Iourtchenko D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36(2), 229–254 (2004). doi:10.1023/B:NODY.0000045510.93602.ca

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang D.-G., Angeles J.: Impact dynamics of flexible-joint robots. Comput. Struct. 83(1), 25–33 (2005)

    Article  Google Scholar 

  9. Blazejczyk-Okolewska B.: Analysis of an impact damper of vibrations. Chaos Solitons Fractals 12(11), 1983–1988 (2001)

    Article  Google Scholar 

  10. Cheng C.C., Cheng C.C., Cheng C.C.: Free vibration analysis of a resilient impact damper. Int. J. Mech. Sci. 45(4), 589–604 (2003)

    Article  MATH  Google Scholar 

  11. Ibrahim R.A.: Vibro-Impact Dynamics : Modeling, Mapping and Applications. Lecture Notes in Applied and Computational Mechanics, vol. 43. Springer, Berlin (2009)

    Google Scholar 

  12. Popplewell N., Liao M.: A simple design procedure for optimum impact dampers. J. Sound Vib. 146(3), 519–526 (1991)

    Article  Google Scholar 

  13. Zinjade P.B., Mallik A.K.: Impact damper for controlling friction-driven oscillations. J. Sound Vib. 306(1–2), 238– 251 (2007)

    Article  Google Scholar 

  14. Son L., Hara S., Yamada K., Matsuhisa H.: Experiment of shock vibration control using active momentum exchange impact damper. J. Vib. Control 16(1), 49–64 (2010). doi:10.1177/1077546309102675

    Article  Google Scholar 

  15. Bapat C.N., Sankar S.: Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)

    Article  MathSciNet  Google Scholar 

  16. Cheng J., Xu H.: Inner mass impact damper for attenuating structure vibration. Int. J. Solids Struct. 43(17), 5355–5369 (2006)

    Article  MATH  Google Scholar 

  17. Wouw N.V.D., Bosch H.L.A.V.D., Kraker A.D., Campen D.H.V.: Experimental and numerical analysis of nonlinear phenomena in a stochastically excited beam system with impact. Chaos Solitons Fractals 9(8), 1409–1428 (1998). doi:10.1016/s0960-0779(98)00073-3

    Article  MATH  Google Scholar 

  18. Palm W.J.: Mechanical Vibration. Wiley, Hoboken (2007)

    Google Scholar 

  19. Rao S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  20. Ba’zant Z.P., Cedolin L.: Stability of Structures : Elastic, Inelastic, Fracture and Damage Theories World Scientific edn. World Scientific Pub, Hackensack (2010)

    Book  Google Scholar 

  21. Simitses G.J., Hodges D.H.: Fundamentals of Structural Stability. Elsevier/Butterworth-Heinemann, Amsterdam (2006)

    MATH  Google Scholar 

  22. Thomson W.T.: Theory of Vibration with Applications, 4th edn. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Afsharfard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afsharfard, A., Farshidianfar, A. An efficient method to solve the strongly coupled nonlinear differential equations of impact dampers. Arch Appl Mech 82, 977–984 (2012). https://doi.org/10.1007/s00419-011-0605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0605-1

Keywords

Navigation