Skip to main content
Log in

A double-superposition global–local theory for vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates: a complex modulus approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A higher-order global–local theory is proposed based on the double-superposition concept for free vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates subjected to thermomechanical loads. In contrast to all theories proposed so far for analysis of the viscoelastic plates, the continuity conditions of the transverse shear and normal stresses at the layer interfaces and the nonzero traction conditions at the top and bottom surfaces of the sandwich plates are satisfied. Another novelty is that these conditions may be satisfied for viscoelastic plates with temperature-dependent material properties and nonlinear behaviors subjected to thermomechanical loads. Furthermore, transverse flexibility is also taken into account. Some dynamic buckling/wrinkling analyses of the viscoelastic plates are performed in the present paper, for the first time. Comparisons made between results of the paper and results reported by well-known references confirm the accuracy and the efficiency of the proposed theory and the relevant solution algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shariyat M.: Three energy-based multiaxial HCF criteria for fatigue life determination in components under random non-proportional stress fields. Fatigue Fract. Eng. Mater. Struct. 32, 785–808 (2009)

    Article  Google Scholar 

  2. Shariyat M., Djamshidi P.: Minimizing the engine-induced harshness based on the DOE method and sensitivity analysis of the full vehicle NVH model. Int. J. Automot. Tech. 10(6), 687–696 (2009)

    Article  Google Scholar 

  3. Drozdov A.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, London (1998)

    MATH  Google Scholar 

  4. Hal F., Brinson L.: Catherine Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, LLC, Berlin (2008)

    Google Scholar 

  5. Shariyat M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int. J. Solids Struct. 45, 25 (2008)

    Article  Google Scholar 

  6. Shariyat M.: Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int. J. Mech. Sci. 50, 1561–1571 (2008)

    Article  Google Scholar 

  7. Shariyat M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to a thermo-electro-mechanical loading conditions. Compos. Struct. 88, 240–252 (2009)

    Article  Google Scholar 

  8. Shariyat M.: Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties. Compos. Struct. 88, 228–239 (2009)

    Article  Google Scholar 

  9. Matsunaga H.: Assessment of a global higher-order deformation theory for laminated composite and sandwich plates. Compos. Struct. 56, 279–291 (2002)

    Article  Google Scholar 

  10. Matsunaga H.: A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings. Compos. Struct. 64, 161–177 (2004)

    Article  Google Scholar 

  11. Robbins D.H., Reddy J.N.: Modelling of thick composites using a layerwise laminate theory. Int. J. Numer. Meth. Eng. 36, 665–677 (1993)

    Article  Google Scholar 

  12. Shariyat M.: Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin Wall. Struct. 45, 439–452 (2007)

    Article  Google Scholar 

  13. Plagianakos T.S., Saravanos D.A.: Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates. Compos. Struct. 87(1), 23–35 (2009)

    Article  Google Scholar 

  14. Dafedar J.B., Desai Y.M.: Thermomechanical buckling of laminated composite plates using mixed, higher-order analytical formulation. J. Appl. Mech. 69, 790–799 (2002)

    Article  MATH  Google Scholar 

  15. Rao M.K., Desai Y.M.: Analytical solutions for vibrations of laminated and sandwich plates using mixed theory. Comp. Struct. 63, 316–373 (2004)

    Google Scholar 

  16. Plagianakos T.S., Saravanos D.A.: High-order layerwise finite element for the damped free-vibration response of thick composite and sandwich composite plates. Int. J. Numer. Meth. Eng. 77(11), 1593–1626 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shariyat M., Eslami M.R.: On thermal dynamic buckling analysis of imperfect laminated cylindrical shells. ZAMM 80(3), 171–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eslami M.R., Shariyat M., Shakeri M.: Layerwise theory for dynamic buckling and postbuckling of laminated composite cylindrical shells. AIAA J. 36(10), 1874–1882 (1998)

    Article  Google Scholar 

  19. Eslami M.R., Shariyat M.: A higher order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shells. Trans. ASME J. Press. Ves. Tech. 121(1), 94–102 (1999)

    Article  Google Scholar 

  20. Oh J., Cho M.: A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviors. Int. J. Solids Struct. 41(5–6), 1357–1375 (2004)

    Article  MATH  Google Scholar 

  21. Demasi L.: Refined multilayered plate element based on Murakami zig-zag functions. Compos. Struct. 70, 308–316 (2005)

    Article  Google Scholar 

  22. Di Sciuva M., Gherlone M.: A global/local third-order Hermitian displacement field with damaged interfaces and transverse extensibility: analytical formulation. Compos. Struct. 59, 419–431 (2003)

    Article  Google Scholar 

  23. Kapuria S., Achary G.G.S.: An efficient higher-order zigzag theory for laminated plates subjected to thermal loading. Int. J. Solids Struct. 41, 4661–4684 (2004)

    Article  MATH  Google Scholar 

  24. Ganapathi M., Patel B.P., Makhecha D.P.: Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory. Compos. B 35, 345–355 (2004)

    Article  Google Scholar 

  25. Li X., Liu D.: A laminate theory based on global–local superposition. Commun. Numer. Meth. Eng. 11, 633–641 (1995)

    Article  MATH  Google Scholar 

  26. Li X., Liu D.: Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Meth. Eng. 40, 1197–1212 (1997)

    Article  MATH  Google Scholar 

  27. Wu Z., Chen W.: Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J. Sound Vib. 298, 333–349 (2006)

    Article  Google Scholar 

  28. Wu Z., Chen W.: A study of global–local higher-order theories for laminated composite plates. Compos. Struct. 79, 44–54 (2007)

    Article  Google Scholar 

  29. Wu Z., Cheung Y.K., Lo S.H., Chen W.: Effects of higher-order global–local shear deformations on bending, vibration and buckling of multilayered plates. Compos. Struct. 82, 277–289 (2008)

    Article  Google Scholar 

  30. Shariyat M.: A generalized high-order global-local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads. Compos. Struct. 92, 130–143 (2010)

    Article  Google Scholar 

  31. Shariyat M.: Non-linear dynamic thermo-mechanical buckling analysis of the imperfect sandwich plates based on a generalized three-dimensional high-order global-local plate theory. Compos. Struct. 92, 72–85 (2010)

    Article  Google Scholar 

  32. Shariyat M.: A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010)

    Article  Google Scholar 

  33. Chandra R., Singh S.P., Gupta K.: Damping studies in fiber-reinforced composites—a review. J Compos. Struct. 46(1), 41–51 (1999)

    Article  Google Scholar 

  34. Malekzadeh K., Khalili M.R., Mittal R.K.: Local and global damped vibrations of plates with a viscoelastic soft flexible core: an improved high-order approach. J. Sandw. Struct. Mater. 7, 431–456 (2005)

    Article  Google Scholar 

  35. Ganapathi M., Patel B.P., Touratier M.: Influence of amplitude of vibrations on loss factors of laminated composite beams and plates. J. Sound Vib. 219, 730–738 (1999)

    Article  Google Scholar 

  36. Hu Y.-C., Haung S.-C.: The frequency response and damping effect of three-layer thin shell with viscoelastic core. Comput. Struct. 76, 577–591 (2000)

    Article  Google Scholar 

  37. Meunier M., Shenoi R.A.: Dynamic analysis of composite plates with damping model using high-order shear deformation theory. J. Compos. Struct. 54, 243–254 (2001)

    Article  Google Scholar 

  38. Nayak A.K., Shenoi R.A., Moy S.S.J.: Analysis of damped composite sandwich plates using plate bending elements with substitute shear strain fields based on Reddy’s higher order theory. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 216(5), 591–606 (2002)

    Article  Google Scholar 

  39. Makhecha D.P., Ganapathi M., Patel B.P.: Vibration and damping analysis of laminated/sandwich composite plates using higher-order theory. J. Reinf. Plas. Comp. 21(6), 559–575 (2002)

    Article  Google Scholar 

  40. Lee D.G., Kosmatka J.B.: Damping analysis of composite sandwich plates with zig-zag triangular elements. AIAA J. 40(6), 1211–1219 (2002)

    Article  Google Scholar 

  41. Moreira R.A.S., Rodrigues J.D.: A layerwise model for thin soft core sandwich plates. Comput. Struct. 84, 1256–1263 (2006)

    Article  Google Scholar 

  42. Pradeep V., Ganesan N.: Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates. J. Sound Vib. 310, 169–183 (2008)

    Article  Google Scholar 

  43. Araújo A.L., Mota Soares C.M., Mota Soares C.A., Herskovits J.: Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates. Compos. Struct. 92(9), 2321–2327 (2010)

    Article  Google Scholar 

  44. Touati D., Cederbaum G.: Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates. Acta Mech. 113, 215–231 (1995)

    Article  MATH  Google Scholar 

  45. Touati D., Cederbaum G.: Postbuckling of non-linear viscoelastic imperfect laminated llates part II: structural analysis. Compos. Struct. 42, 43–51 (1998)

    Article  Google Scholar 

  46. Batra R.C., Wei Z.: Dynamic buckling of a thin thermoviscoplastic rectangular plate. Thin-Walled Struct. 43, 273–290 (2005)

    Article  Google Scholar 

  47. Pradeep V., Ganesan N.: Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates. J. Sound Vib. 310, 169–183 (2008)

    Article  Google Scholar 

  48. Lakes R.S.: Viscoelastic Materials. 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  49. Shariyat, M.: Non-linear dynamic thermo-mechanical buckling analysis of the imperfect laminated and sandwich cylindrical shells based on a global–local theory inherently suitable for non-linear analyses. Int. J. Non Linear Mech. (2010). doi:10.1016/j.ijnonlinmec.2010.09.006

  50. Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: Finite element model for Hybrid active_passive damping analysis of anisotropic laminated sandwich structures. J. Sandwich Struct. Mater. (2009). doi:10.1177/1099636209104534

  51. Duigou L., Daya E.M., Potier-Ferry M.: Iterative algorithms for non-linear eigenvalue problems: application to vibrations of vscoelastic shells. Comput. Meth. Appl. Mech. Eng. 192, 1323–1335 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shariyat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shariyat, M. A double-superposition global–local theory for vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates: a complex modulus approach. Arch Appl Mech 81, 1253–1268 (2011). https://doi.org/10.1007/s00419-010-0483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0483-y

Keywords

Navigation