Skip to main content
Log in

A mixed finite volume formulation for the solution of gradient elasticity problems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present works aims at solving the equations of dipolar gradient elasticity via the finite volume method. Initially, a general, mixed, finite volume formulation is stated. As a first approach, the equations of 1D and 2D gradient elasticity are solved via the proposed method. Numerical implementation shows that the suggested model is in excellent agreement with analytic solutions. The approach seems to be promising for extension to 3D problems also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amanatidou E., Aravas N.: Mixed finite element formulations of strain–gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002)

    Article  MATH  Google Scholar 

  2. Borst R.: Simulation of strain localisation: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)

    Article  Google Scholar 

  3. Borst R., Muhlhaus H.B.: Gradient dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–540 (1992)

    Article  MATH  Google Scholar 

  4. Borst R., Pamin J.: Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)

    Article  MATH  Google Scholar 

  5. Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fleck N.A. et al.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  MathSciNet  Google Scholar 

  7. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  8. Georgiadis H.G., Vardoulakis I.: Anti-plane shear Lamb’s problem treated by gradient elasticity with surface energy. Wave Motion 28, 353–366 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Georgiadis H.G., Grentzelou C.G.: Energy theorems and the J-integral in dipolar gradient elasticity. Int. J. Solids Struct. 43, 5690–5712 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grentzelou C.G., Georgiadis H.G.: Balance laws and energy release rates for cracks in dipolar gradient elasticity. Int. J. Solids Struct. 45, 551–567 (2008)

    Article  MATH  Google Scholar 

  11. Koiter W.T.: Couple-stresses in the theory of elasticity. I. Proc. K. Ned. Akad. Wet. (B) 67, 17–29 (1964)

    MATH  Google Scholar 

  12. Koiter W.T: Couple-stresses in the theory of elasticity. II. Proc. K. Ned. Akad. Wet. (B) 67, 30–44 (1964)

    MATH  MathSciNet  Google Scholar 

  13. Lam D.C.C. et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  14. Leblond J.B. et al.: Bifurcation effects in ductile materials with damage localization. J. Appl. Mech. 61, 236–242 (1994)

    Article  MATH  Google Scholar 

  15. Markolefas S.I. et al.: Theoretical analysis of a class of mixed, C0 continuity formulations for general dipolar Gradient Elasticity boundary value problems. Int. J. Solids Struct. 44, 546–572 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 10, 51–78 (1964)

    MathSciNet  Google Scholar 

  18. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  19. Pijaudier-Cabot G., Bazant Z.P.: Non local damage theory. J. Eng. Mech. ASCE 113, 1512–1533 (1987)

    Article  Google Scholar 

  20. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsamasphyros, G.I., et al.: Convergence analysis and comparison of the h- and p-extensions with mixed finite element C0 continuity formulations, for some types of one dimensional biharmonic equations. In: Proceedings of the 5th GRACM International Congress on Computational Mechanics, Limassol, Cyprus, June 29–July 1, pp. 853–860 (2005)

  22. Tsamasphyros G.I. et al.: Convergence and performance of the h- and p-extensions with mixed finite element C0-continuity formulations, for tension and buckling of a gradient elastic beam. Int. J. Solids Struct. 44, 5056–5074 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsepoura K.G. et al.: Static and dynamic analysis of a gradient-elastic bar in tension. Arch. Appl. Mech. 72, 483–497 (2002)

    Article  MATH  Google Scholar 

  24. Tvergaard V., Needleman A.: Effects of non local damage in porous plastic solids. Int. J. Solids Struct. 32, 1063–1077 (1995)

    Article  MATH  Google Scholar 

  25. Vardoulakis I.: Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum theory. Ingenieur-Archiv 59, 106–113 (1989)

    Article  Google Scholar 

  26. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Blackie/Chapman & Hall, London (1995)

    Google Scholar 

  27. Altan B.S., Aifantis E.C.: On the structure of the mode-III crack-tip in gradient elasticity. Scripta Met. 26, 319–324 (1992)

    Article  Google Scholar 

  28. Altan B.S., Aifantis E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos D. Vrettos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsamasphyros, G.I., Vrettos, C.D. A mixed finite volume formulation for the solution of gradient elasticity problems. Arch Appl Mech 80, 609–627 (2010). https://doi.org/10.1007/s00419-009-0332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0332-z

Keywords

Navigation